Citation: Lin-Lin Du, Bing-Li Jiang, Xiao-Hong Chen, Yun-Zhong Wang, Lin-Min Zou, Yuan-Li Liu, Yong-Yang Gong, Chun Wei, Wang-Zhang Yuan. Clustering-triggered Emission of Cellulose and Its Derivatives[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 409-415. doi: 10.1007/s10118-019-2215-2 shu

Clustering-triggered Emission of Cellulose and Its Derivatives

  • In recent years, nonconventional luminogens free of aromatic groups have attracted extensive attention due to their academic importance and promising wide applications. Whilst previous studies generally focused on fluorescence from aliphatic amine or carbonyl-containing systems, less attention has been paid to room temperature phosphorescence (RTP) and the systems with predominant oxygen functionalities. In this work, photophysical properties of the polyhydroxy polymers, including microcrystalline cellulose (MCC), 2-hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), and cellulose acetate (CA), were studied and compared. While MCC, HEC, and HPC solids showed bright emission alongside distinct RTP, CA demonstrated relatively low intensity of solid emission without noticeable RTP. Their emissions were explained in terms of the clustering-triggered emission (CTE) mechanism and conformation rigidification. Additionally, on account of its intrinsic emission, concentrated HEC aqueous solution could be used as the probe for the detection of 2,4,6-trinitrophenol (TNP).
  • 加载中
    1. [1]

      Hebner, T.; Wu, C.; Marcy, D.; Lu, M.; Sturm, J. Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 1998, 72, 519-521.  doi: 10.1063/1.120807

    2. [2]

      Gustafsson, G.; Cao, Y.; Treacy, G.; Klavetter, F.; Colaneri, N.; Heeger, A. Flexible light-emitting diodes made from soluble conducting polymers. Nature 1992, 357, 477-479.  doi: 10.1038/357477a0

    3. [3]

      Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Andersson M. R.; Pei, Q.; Heeger, A. J. Semiconducting polymers: a new class of solid-state laser materials. Science 1996, 273, 1833-1836.  doi: 10.1126/science.273.5283.1833

    4. [4]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.

    5. [5]

      Yuan, W. Z.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 560-574.  doi: 10.1002/pola.28420

    6. [6]

      Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B. Z.; Zhang, Y.; Yuan, W. Z. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 2018, 19, 2014-2022.  doi: 10.1021/acs.biomac.8b00123

    7. [7]

      Wang, Y.; Bin, X.; Chen, X.; Zheng, S.; Zhang, Y.; Yuan, W. Z. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid Commun. 2018, 1800528.

    8. [8]

      Du, Y.; Yan, H.; Huang, W.; Chai, F.; Niu, S. Unanticipated strong blue photoluminescence from fully biobased aliphatic hyperbranched polyesters. ACS Sustain. Chem. Eng. 2017, 5, 6139-6147.  doi: 10.1021/acssuschemeng.7b01019

    9. [9]

      Du, Y.; Yan, H.; Niu, S.; Bai, L.; Chai, F. Facile one-pot synthesis of novel water-soluble fluorescent hyperbranched poly(amino esters). RSC Adv. 2016, 6, 88030-88037.  doi: 10.1039/C6RA19062F

    10. [10]

      Shang, C.; Wei, N.; Zhuo, H.; Shao, Y.; Zhang, Q.; Zhang, Z.; Wang, H. Highly emissive poly(maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence. J. Mater. Chem. C 2017, 5, 8082-8090.  doi: 10.1039/C7TC02381B

    11. [11]

      Hu, C.; Ru, Y.; Guo, Z.; Liu, Z.; Song, J.; Song, W.; Zhang, X.; Qiao, J. New multicolored AIE photoluminescent polymers prepared by controlling the pH value. J. Mater. Chem. C 2019, DOI: 10.1039/c8tc05197f.  doi: 10.1039/c8tc05197f

    12. [12]

      Ye, R.; Liu, Y.; Zhang, H.; Su, H.; Zhang, Y.; Xu, L.; Hu, R.; Kwok, R. T. K.; Wong, K. S.; Lam, J. W. Y.; Goddard III, W. A.; Tang, B. Z. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym. Chem. 2017, 8, 1722-1727.  doi: 10.1039/C7PY00154A

    13. [13]

      Chen, X.; He, Z.; Kausar, F.; Chen, G.; Zhang, Y.; Yuan, W. Z. Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate). Macromolecules 2018, 51, 9035-9042.  doi: 10.1021/acs.macromol.8b01743

    14. [14]

      Gong, J.; Wei, P.; Su, Y.; Li, Y.; Feng, X.; Lam, J. W. Y.; Zhang, D.; Song, X.; Tang, B. Z. Red-emitting salicylaldehyde schiff base with AIE behavior and large stokes shift. Chin. Chem. Lett. 2018, 29, 1493-1496.  doi: 10.1016/j.cclet.2018.05.043

    15. [15]

      Hang, Y.; Cai, X.; Wang, J.; Jiang, T.; Hua, J.; Liu, B. Galactose functionalized diketopyrrolopyrrole as NIR fluorescence probes for lectin detection and HepG2 cell targeting based on aggregation-induced emission mechanism. Sci. China Chem. 2018, 16, 898-908.

    16. [16]

      Shimizu, M.; Nakatani, M.; Nishimura, K. Aggregation-induced emission and thermally activated delayed fluorescence of 2, 6-diaminobenzophenones. Sci. China Chem. 2018, 61, 925-931.  doi: 10.1007/s11426-018-9301-6

    17. [17]

      Mao, L.; Zhang, X.; Wei, Y. Recent advances and progress for the fabrication and surface modification of AIE-active organic-inorganic luminescent composites. Chinese J. Polym. Sci. 2019 DOI: 10.1007/s10118-019-2208-1.  doi: 10.1007/s10118-019-2208-1

    18. [18]

      Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan, W. Z.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351-359.  doi: 10.1007/s11426-017-9114-4

    19. [19]

      Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y. Q.; Peng, Q.; Li, Q.; Li, Z. Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Mater. Chem. Front. 2018, 2, 2124-2129.  doi: 10.1039/C8QM00396C

    20. [20]

      Lin, Y.; Gao, J. W.; Liu, H. W.; Li, Y. S. Synthesis and characterization of hyperbranched poly (ether amide)s with thermoresponsive property and unexpected strong blue photoluminescence. Macromolecules 2009, 42, 3237-3246.  doi: 10.1021/ma802353f

    21. [21]

      Wu, D.; Liu, Y.; He, C.; Goh, S. H. Blue photoluminescence from hyperbranched poly (amino ester)s. Macromolecules 2005, 38, 9906-9909.  doi: 10.1021/ma051407x

    22. [22]

      Restani, R. B.; Morgado, P. I.; Ribeiro, M. P.; Correia, I. J.; Aguiar-Ricardo, A.; Bonifácio, V. D. Biocompatible polyurea dendrimers with pH-dependent fluorescence. Angew. Chem. 2012, 124, 5252-5255.  doi: 10.1002/ange.201200362

    23. [23]

      Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W. Z.; Zhang, Y. Clustering‐triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586-6592.  doi: 10.1002/smll.v12.47

    24. [24]

      Zhao, E.; Lam, J. W. Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X., Hao, J.; Tang, B. Z. Poly[(maleic anhydride)-alt-(vinyl acetate)]: A pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 2014, 48, 64-71.

    25. [25]

      Niu, S.; Yan, H.; Chen, Z.; Li, S.; Xu, P.; Zhi, X. Unanticipated bright blue fluorescence produced from novel hyperbranched polysiloxanes carrying unconjugated carbon-carbon double bonds and hydroxyl groups. Polym. Chem. 2016, 7, 3747-3755.  doi: 10.1039/C6PY00654J

    26. [26]

      Miao, X.; Liu, T.; Zhang, C.; Geng, X.; Meng, Y.; Li, X. Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms. Phys. Chem. Chem. Phys. 2016, 18, 4295-4299.  doi: 10.1039/C5CP07134H

    27. [27]

      Wang, R. B.; Yuan, W. Z.; Zhu, X. Y. Aggregation-induced emission of non-conjugated poly (amido amine)s: discovering, luminescent mechanism understanding and bioapplication. Chinese J. Polym. Sci. 2015, 33, 680-687.  doi: 10.1007/s10118-015-1635-x

    28. [28]

      Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane-poly (amidoamine) dendrimers. Macromolecules 2015, 48, 476-482.  doi: 10.1021/ma502352x

    29. [29]

      Lee, W. I.; Bae, Y.; Bard, A. J. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 8358-8359.  doi: 10.1021/ja0475914

    30. [30]

      Du, L.; He, G.; Gong, Y.; Yuan, W. Z.; Wang, S.; Yu, C.; Liu, Y.; Wei, C. Efficient persistent room temperature phosphorescence achieved through Zn2+ doped sodium carboxymethyl cellulose composites. Compos. Commun. 2018, 8, 106-110.  doi: 10.1016/j.coco.2017.12.005

    31. [31]

      Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Lam, J. W.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C 2010, 114, 6090-6099.  doi: 10.1021/jp909388y

    32. [32]

      Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan, W.; Zhang, Y.; Sun, J.; Tang, B. Z. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 2013, 56, 1178-1182.  doi: 10.1007/s11426-013-4923-8

    33. [33]

      Zhou, Q.; Wang, Z.; Dou, X.; Wang, Y.; Liu, S.; Zhang, Y.; Yuan, W. Z. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front. 2019, DOI: 10.1039/C8QM00528A.  doi: 10.1039/C8QM00528A

    34. [34]

      Kaur, S.; Bhalla, V.; Vij, V.; Kumar, M. Fluorescent aggregates of hetero-oligophenylene derivative as " no quenching” probe for detection of picric acid at femtogram level. J. Mater. Chem. C 2014, 2, 3936-3941.  doi: 10.1039/C3TC32516D

    35. [35]

      Dinda, D.; Gupta, A.; Shaw, B. K.; Sadhu, S.; Saha, S. K. Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. ACS Appl. Mater. Interfaces 2014, 6, 10722-10728.  doi: 10.1021/am5025676

    36. [36]

      Chen, X.; Liu, X.; Lei, J.; Xu, L.; Zhao, Z.; Kausar, F.; Xie, X.; Zhu, X.; Zhang, Y.; Yuan, W. Z. Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Mol. Syst. Des. Eng. 2018, 3, 364-375.  doi: 10.1039/C7ME00118E

  • 加载中
    1. [1]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    2. [2]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    3. [3]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    4. [4]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    5. [5]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    6. [6]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    7. [7]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    8. [8]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    9. [9]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    10. [10]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    11. [11]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    12. [12]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    13. [13]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    14. [14]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    15. [15]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    16. [16]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    17. [17]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    18. [18]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    19. [19]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    20. [20]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

Metrics
  • PDF Downloads(0)
  • Abstract views(903)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return