Citation: Dong-Lei Liu, Feng Zhou, Kun Fang. A Theoretical Study on Transitional Shear Flow Behavior of the Compressible and Isothermal Thermoplastic Polymer[J]. Chinese Journal of Polymer Science, ;2019, 37(5): 518-526. doi: 10.1007/s10118-019-2214-3 shu

A Theoretical Study on Transitional Shear Flow Behavior of the Compressible and Isothermal Thermoplastic Polymer

  • Corresponding author: Dong-Lei Liu, 
  • Received Date: 29 September 2018
    Revised Date: 16 December 2018
    Available Online: 29 January 2019

  • By extending the virtual conformational element of the polymer chain, a dynamic end-to-end (ETE) vector was presented to describe the chain’s instantaneous morphology based on the spring-bead theory. A feasible viscoelastic model was proposed to describe the rheological behavior of the isothermal thermoplastic polymer materials, based on the molecular kinetics, thermodynamics, and continuum mechanics method. The model is simplified as the generalized Newton’s law. Its integral formula with similar form to the K-BKZ model was also derived. Rheological experiments were carried out with the isotactic polypropylene material. The experimental results reveal that the viscoelastic model exhibits a three-stage rheological characteristic. There is a distinct high-elastic rheological region in the middle stage, reflecting the pseudoplastic fluids properties. Compared with the Ostwald-de Waele power law model, the viscoelastic model shows a better agreement with the rheological practices.
  • 加载中
    1. [1]

      Wang, S. Q.; Ravindranath, S.; Wang, Y.; Boukany, P. New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network. J. Chem. Phys. 2007, 127, 064903. DOI: 10.1063/1.2753156.  doi: 10.1063/1.2753156

    2. [2]

      Lu, Z. L.; Pan, Y. M.; Liu, X. H.; Zheng, G. Q.; Schubert, D. W.; Liu, C. T. Molar mass and temperature dependence of rheological properties of polymethylmethacrylate melt. Mater. Lett. 2018, 221, 62-65. DOI: 10.1016/j.matlet.2018.03.077.  doi: 10.1016/j.matlet.2018.03.077

    3. [3]

      Luo, F.; Liu, X. H.; Shao C. G.; Zhang, J. X.; Shen, C. Y.; Guo, Z. H. Micromechanical analysis of molecular orientation in high-temperature creep of polycarbonate. Mater. Des. 2018, 144, 25-31. DOI: 10.1016/j.matdes.2018.02.025.  doi: 10.1016/j.matdes.2018.02.025

    4. [4]

      Liu, X. H.; Pan, Y. M.; Zheng, G. Q.; Schubert, D. W. Rheological and electrical behavior of poly(methyl methacrylate)/carbon black composites as investigated by creep recovery in shear. Compos. Sci. Technol. 2016, 128, 1-7. DOI: 10.1016/j.compscitech.2016.03.011.  doi: 10.1016/j.compscitech.2016.03.011

    5. [5]

      Isayev, A. I.; Shyu, G. D.; Li, C. T. Residual stresses and birefringence in injection molding of amorphous polymers: simulation and comparison with experiment. J. Polym. Sci., Part B: Polym. Phys. 2006, 44: 622-639. DOI: 10.1002/polb.20724.  doi: 10.1002/polb.20724

    6. [6]

      Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 1. Brownian motion in the equilibrium state. J. Chem. Soc. Faraday Trans. 1978, 74: 1789-1801. DOI: 10.1039/F29787401789.  doi: 10.1039/F29787401789

    7. [7]

      Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 2. Molecular motion under flow. J. Chem. Soc. Faraday. Trans. 1978, 74: 1802-1817. DOI: 10.1039/F29787401802.  doi: 10.1039/F29787401802

    8. [8]

      Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 3. The constitutive equation. J. Chem. Soc. Faraday Trans. 1978, 74: 1818-1832. DOI: 10.1039/F29787401818.  doi: 10.1039/F29787401818

    9. [9]

      Doi, M.; Edwards, S. F. Dynamics of concentrated polymer systems. Part 4. Rheological properties. J. Chem. Soc. Faraday. Trans. 1978, 75: 38-54. DOI: 10.1039/F29797500038.  doi: 10.1039/F29797500038

    10. [10]

      Doi, M.; Edwards, S. F., in Theory of polymer dynamics, Oxford University Press, New York, 1986.

    11. [11]

      Larson, R. G. in The structure and rheology of complex fluid, Oxford University Press, New York, 1999.

    12. [12]

      Bird, R. B.; Wiest, J. M. Constitutive equation for polymeric liquids. Annu. Rev. Fluid Mech. 1995, 27: 169-193. DOI: 10.1146/annurev.fl.27.010195.001125.  doi: 10.1146/annurev.fl.27.010195.001125

    13. [13]

      White, J. L.; Mertzner, A. B. Development of constitutive equation for polymeric melts and solution. J. Appl. Polym. Sci. 1963, 7: 1867-1889. DOI: 10.1002/app.1963.070070524  doi: 10.1002/app.1963.070070524

    14. [14]

      Larson R. G., in Constitutive equation for polymer melts and solutions, Butterworks, Boston, 1988.

    15. [15]

      Bird, R. B.; Armstrong, R. C.; Hassager, O. in Dynamics of polymer liquids, Vol.1, Fluid Mechanics, Wiley Interscience, New York, 1987.

    16. [16]

      Kiriakidis, D. G.; Park, H. J.; Mitsoulis, E.; Mitsoulis, E.; Agassant, J. F. A Study of Stress Distribution in Contraction Flows of and LLDPE Melt. J. Non-Newtonian Fluid. Mech. 1993, 47: 339-356. DOI: 10.1016/0377-0257(93)80057-I.  doi: 10.1016/0377-0257(93)80057-I

    17. [17]

      Maders, H.; Vergnes, B.; Demay, Y.; Agassant, J. F. Steady flow of a white-metzner fluid in a 2-D abrupt contraction: Computation and experiments. J. Non-Newtonian Fluid. Mech. 1992, 45: 63-80. DOI:10.1016/0377-0257(92)80061-2.  doi: 10.1016/0377-0257(92)80061-2

    18. [18]

      Phan-Thien, N.; Tanner, R. I. A new constitutive equation derived from network theory. J. Non-Newtonian Fluid. Mech. 1977, 2: 353-365. DOI: 10.1016/0377-0257(77)80021-9.  doi: 10.1016/0377-0257(77)80021-9

    19. [19]

      Johnson, M. W.; Segalman, D. A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid. Mech. 1977, 2: 255-270. DOI: 10.1016/0377-0257(77)80003-7.  doi: 10.1016/0377-0257(77)80003-7

    20. [20]

      Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid. Mech. 1982, 11: 69-109. DOI: 10.1016/0377-0257(82)85016-7.  doi: 10.1016/0377-0257(82)85016-7

    21. [21]

      Oliveira, P. J. Alternative derivation of differential constitutive equations of the oldroyd-b type. J. Non-Newtonian Fluid. Mech. 2009, 160: 40-46. DOI: 10.1016/j.jnnfm.2008.11.013.  doi: 10.1016/j.jnnfm.2008.11.013

    22. [22]

      Bernstein, B.; Kearsley, E. A.; Zapas, L. J. A study of stress relaxation with finite strain. J. Rheol. 1963, 7: 391-410. DOI: 10.1122/1.548963.  doi: 10.1122/1.548963

    23. [23]

      Christainsen, R. L; Bird, R. B. Dilute solution rheology: Experimental results and finitely extensible nonlinear elastic dumbbell theory. J. Non-Newton. Fluid. Mech. 1977, 3: 161-177. DOI: 10.1016/0377-0257(77)80047-5.  doi: 10.1016/0377-0257(77)80047-5

    24. [24]

      Doi, M. A constitutive equation derived from the model of doiand edwards for concentrated polymer solutions and polymer melts. J. Polym. Sci., Part B: Polym. Phys. 1980, 18: 2055-2067. DOI: 10.1002/pol.1980.180181005.  doi: 10.1002/pol.1980.180181005

    25. [25]

      Laso, M.; Öttinger, H. C. Calculation of viscoelastic flow using molecular models: The connffessit approach. J. Non-Newton. Fluid. Mech. 1993, 47: 1-20. DOI: 10.1016/0377-0257(93)80042-A.  doi: 10.1016/0377-0257(93)80042-A

    26. [26]

      Liu, D. L.; Cao, W.-H.; Xin, Y.; Sun, L. Relationship model theory of polymer o-rientation stress-morphology for incompressible and isothermal melts in injection molding. Polym. Mater. Sci. Eng. 2014, 30: 109-118. DOI: 10.16865/j.cnki.1000-7555.2014.08.022.  doi: 10.16865/j.cnki.1000-7555.2014.08.022

    27. [27]

      Liu, D.-L.; Cao, W.-H.; Xin, Y. Study on the polymer melt flow-induced orientation stress model in injection molding: with the isothermal compressible hypothesis. J. Mech. Eng. 2014, 50: 75-82. DOI: 10.3901/JME.2014.12.075.  doi: 10.3901/JME.2014.12.075

    28. [28]

      Therkelsen S. V., in Constitutive modeling of active polymers, B.S. Mechanical Engineering, University of Iowa, 2002.

    29. [29]

      Doi, M., in Introduce of polymer physics, Clarendon Press, Oxford, 1996.

    30. [30]

      Reddy, J. N., in Introduction to continuum mechanics: With applications, Cambridge University Press, Cambridge, 2008.

    31. [31]

      Tanner, R. I. From A to (BK)Z in constitutive relations. J. Rheol. 1988, 32: 673-702. DOI: 10.1122/1.549986.  doi: 10.1122/1.549986

  • 加载中
    1. [1]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    2. [2]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    3. [3]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    4. [4]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    5. [5]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    6. [6]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    7. [7]

      Quan ZhouXiao-Min ChenXujie QinZhe-Ning ChenJun ChenWei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770

    8. [8]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    9. [9]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    10. [10]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    11. [11]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    12. [12]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    13. [13]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    14. [14]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    15. [15]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    16. [16]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    17. [17]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    18. [18]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    19. [19]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    20. [20]

      Hongjie GuoQiang WeiYangyang WuWei QiuHongliang LiChangyong Zhang . Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization. Chinese Chemical Letters, 2024, 35(8): 109325-. doi: 10.1016/j.cclet.2023.109325

Metrics
  • PDF Downloads(0)
  • Abstract views(754)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return