Citation:
Liu-Cheng Mao, Xiao-Yong Zhang, Yen Wei. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites[J]. Chinese Journal of Polymer Science,
;2019, 37(4): 340-351.
doi:
10.1007/s10118-019-2208-1
-
Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently because of their important applications in the areas of biomedical imaging, chemical sensors, and light-emitting diodes (LEDs). Nevertheless, conventional fluorescence molecules suffer from aggregation-caused quenching (ACQ) when they are doped into inorganic nanomaterials. Aggregation-induced emission (AIE) is an abnormal and intriguing fluorescent phenomenon that has aroused increasing interest for various applications especially in biomedical fields. Compared with conventional organic dyes, the AIE-active molecules will emit more intense fluorescence in their aggregates or solid states. It provides an elegant route to overcome the drawbacks of conventional organic molecules. Over the past few decades, the fabrication and surface modification of various organic-inorganic luminescent composites doped with AIE-active molecules have been reported. Therefore, it is highly desirable to summarize these advances. In this review, recent advances and progress in constructing various AIEgens-doped organic-inorganic hybrid nanocomposites and their subsequent surface modification were summarized. We hope this review could further promote the research of AIE-active functional materials.
-
-
-
[1]
Su, L.; Zhang, X.; Zhang, Y.; Rogach, A. L., Recent progress in quantum dot based white light-emitting devices. In Photoactive semiconductor nanocrystal quantum dots, Springer, 2017, pp 123−147.
-
[2]
Zhao, Z.; Lam, J. W.; Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem. 2012, 22, 23726-23740. doi: 10.1039/c2jm31949g
-
[3]
Dai, Q.; Duty, C. E.; Hu, M. Z. Semiconductor-nanocrystals-based white light-emitting diodes. Small 2010, 6, 1577-1588. doi: 10.1002/smll.v6:15
-
[4]
Zou, L.; Gu, Z.; Sun, M. Review of the application of quantum dots in the heavy-metal detection. Toxicol. Environ. Chem. 2015, 97, 477-490. doi: 10.1080/02772248.2015.1050201
-
[5]
Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413. doi: 10.1021/acs.chemrev.5b00703
-
[6]
Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano. Today 2014, 9, 132-157. doi: 10.1016/j.nantod.2014.02.010
-
[7]
Lim, S. Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381. doi: 10.1039/C4CS00269E
-
[8]
Wegner, K. D.; Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792-4834. doi: 10.1039/C4CS00532E
-
[9]
Tao, Y.; Li, M.; Ren, J.; Qu, X. ChemInform abstract: Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636-63. doi: 10.1039/C5CS00607D
-
[10]
Huang, H.; Liu, M.; Tuo, X.; Chen, J.; Mao, L.; Wen, Y.; Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging. Appl. Surf. Sci. 2018, 439, 1143-1151. doi: 10.1016/j.apsusc.2017.12.233
-
[11]
Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J. Mater. Chem. B 2017, 5, 194-206. doi: 10.1039/C6TB02249A
-
[12]
Huang, H.; Liu, M.; Jiang, R.; Chen, J.; Mao, L.; Wen, Y.; Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J. Colloid Interf. Sci. 2018, 513, 198-204. doi: 10.1016/j.jcis.2017.11.009
-
[13]
Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug. Deliver. Rev. 2008, 60, 1226-1240. doi: 10.1016/j.addr.2008.03.015
-
[14]
Pan, Y.; Chang, T.; Marcq, G.; Liu, C.; Kiss, B.; Rouse, R.; Mach, K. E.; Cheng, Z.; Liao, J. C. In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci. Rep. 2017, 7, 9309. doi: 10.1038/s41598-017-08591-w
-
[15]
Ahmad, A.; Zakaria, N. D.; Razak, K. A. In Photostability effect of silica nanoparticles encapsulated fluorescence dye, AIP. Conf. Proc, AIP Publishing, 2017, p 020010.
-
[16]
Long, Z.; Liu, M.; Jiang, R.; Wan, Q.; Mao, L.; Wan, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chem. Eng. J. 2017, 308, 527-534. doi: 10.1016/j.cej.2016.09.053
-
[17]
Liu, M.; Ji, J.; Zhang, X.; Zhang, X.; Yang, B.; Deng, F.; Li, Z.; Wang, K.; Yang, Y.; Wei, Y. Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J. Mater. Chem. B 2015, 3, 3476-3482. doi: 10.1039/C4TB02067G
-
[18]
Shi, Y.; Jiang, R.; Liu, M.; Fu, L.; Zeng, G.; Wan, Q.; Mao, L.; Deng, F.; Zhang, X.; Wei, Y. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng. C-Mater. 2017, 77, 972-977. doi: 10.1016/j.msec.2017.04.033
-
[19]
Cao, Q.-y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Mater. Sci. Eng. C-Mater. 2017, 80, 578-583. doi: 10.1016/j.msec.2017.07.006
-
[20]
Cao, Q.-y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Mater. Sci. Eng. C-Mater. 2017, 80, 411-416. doi: 10.1016/j.msec.2017.06.008
-
[21]
Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, L.; Huang, Q.; Wan, Q.; Wen, Y.; Zhang, X.; Wei, Y. Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging. Mater. Sci. Eng. C-Mater. 2017, 78, 862-867. doi: 10.1016/j.msec.2017.04.080
-
[22]
Jiang, R.; Liu, H.; Liu, M.; Tian, J.; Huang, Q.; Huang, H.; Wen, Y.; Cao, Q.-y.; Zhang, X.; Wei, Y. A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. Mater. Sci. Eng. C-Mater. 2017, 81, 416-421. doi: 10.1016/j.msec.2017.08.048
-
[23]
Jiang, R.; Liu, M.; Li, C.; Huang, Q.; Huang, H.; Wan, Q.; Wen, Y.; Cao, Q.-y.; Zhang, X.; Wei, Y. Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: Synthesis, aggregation-induced emission and biological imaging. Mater. Sci. Eng. C-Mater. 2017, 80, 708-714. doi: 10.1016/j.msec.2017.07.008
-
[24]
Tian, J.; Jiang, R.; Gao, P.; Xu, D.; Mao, L.; Zeng, G.; Liu, M.; Deng, F.; Zhang, X.; Wei, Y. Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid) s. Mater. Sci. Eng. C-Mater. 2017, 79, 563-569. doi: 10.1016/j.msec.2017.05.090
-
[25]
Wan, Q.; Liu, M.; Mao, L.; Jiang, R.; Xu, D.; Huang, H.; Dai, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction: Self-assembly, characterization and biological imaging applications. Mater. Sci. Eng. C-Mater. 2017, 72, 352-358. doi: 10.1016/j.msec.2016.11.058
-
[26]
Huang, L.; Liu, M.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules 2018, 19, 1858-1868. doi: 10.1021/acs.biomac.8b00437
-
[27]
Jiang, R.; Liu, M.; Huang, H.; Mao, L.; Huang, Q.; Wen, Y.; Cao, Q.-y.; Tian, J.; Zhang, X.; Wei, Y. Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. J. Colloid Interf. Sci. 2018, 519, 137-144. doi: 10.1016/j.jcis.2018.01.084
-
[28]
Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 2014, 5, 689-693. doi: 10.1039/C3PY01272G
-
[29]
Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Facile fabrication and cell imaging applications of aggregation induced emission dye based fluorescent organic nanoparticles. Polym. Chem. 2013, 4, 4317-4321. doi: 10.1039/c3py00712j
-
[30]
Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Polymerizable aggregation induced emission dye based fluorescent nanoparticles for cell imaging applications Polym. Chem. 2014, 5, 356-360.
-
[31]
Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym. Chem. 2014, 5, 399-404. doi: 10.1039/C3PY00984J
-
[32]
Jiang, R.; Liu, M.; Chen, T.; Huang, H.; Huang, Q.; Tian, J.; Wen, Y.; Cao, Q. Y.; Zhang, X.; Wei, Y. Facile construction and biological imaging of cross-linked fluorescent organic nanoparticles with aggregation-induced emission feature through a catalyst-free azide-alkyne click reaction. Dyes Pigments 2018, 148, 52-60. doi: 10.1016/j.dyepig.2017.09.005
-
[33]
Xu, D.; Liu, M.; Zou, H.; Huang, Q.; Huang, H.; Tian, J.; Jiang, R.; Wen, Y.; Zhang, X.; Wei, Y. Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. J. Taiwan Inst. Chem. E 2017, 78, 455-461. doi: 10.1016/j.jtice.2017.05.024
-
[34]
Xu, D.; Zeng, S.; Liu, M.; Chen, J.; Huang, H.; Deng, F.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of PEGylated and biodegradable fluorescent organic nanoparticles with aggregation-induced emission characteristics through direct ring-opening polymerization. J. Taiwan Inst. Chem. E 2018.
-
[35]
Cui, Y.; Song, T.; Yu, J.; Yang, Y.; Wang, Z.; Qian, G. Dye encapsulated metal-organic framework for warm-white LED with high color-rendering index. Adv. Funct. Mater. 2015, 25, 4796-4802. doi: 10.1002/adfm.201501756
-
[36]
Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z. AIE luminogens: emission brightened by aggregation. Mater. Today 2015, 18, 365-377. doi: 10.1016/j.mattod.2015.03.004
-
[37]
Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740-1741.
-
[38]
Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388. doi: 10.1039/c1cs15113d
-
[39]
Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-4353.
-
[40]
Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479. doi: 10.1002/adma.201401356
-
[41]
Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
-
[42]
Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159-2163. doi: 10.1002/adma.v22:19
-
[43]
Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 2010, 20, 1858-1867. doi: 10.1039/b921610c
-
[44]
Zhan, C.; You, X.; Zhang, G.; Zhang, D. Bio-/chemosensors and imaging with aggregation-induced emission luminogens. Chem. Rec. 2016, 16, 2142-2160. doi: 10.1002/tcr.v16.4
-
[45]
Kwok, R. T.; Leung, C. W.; Lam, J. W.; Tang, B. Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228-4238. doi: 10.1039/C4CS00325J
-
[46]
Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. J. Mater. Chem. B 2014, 2, 4398-4414.
-
[47]
Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 2015, 7, 11486-11508. doi: 10.1039/C5NR01444A
-
[48]
Yi, X.; Li, J.; Zhu, Z.; Liu, Q.; Xue, Q.; Ding, D. In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug. Discov. Today 2017, 22, 1412-1420. doi: 10.1016/j.drudis.2017.04.004
-
[49]
Wan, Q.; Huang, Q.; Liu, M.; Xu, D.; Huang, H.; Zhang, X.; Wei, Y. Aggregation-induced emission active luminescent polymeric nanoparticles: Non-covalent fabrication methodologies and biomedical applications. Appl. Mater. Today 2017, 9, 145-160.
-
[50]
Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453. doi: 10.1021/ar3003464
-
[51]
Sun, X.; Zebibula, A.; Dong, X.; Zhang, G.; Zhang, D.; Qian, J.; He, S. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS. Appl. Mater. Interfaces 2018. doi: 10.1021/acsami.8b05546
-
[52]
Li, D.; Yu, J. AIEgens-functionalized inorganic-organic hybrid materials: fabrications and applications. Small 2016, 12, 6478-6494. doi: 10.1002/smll.v12.47
-
[53]
Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241-7244. doi: 10.1021/ja502643p
-
[54]
Li, D.; Yu, J.; Xu, R. Mesoporous silica functionalized with an AIE luminogen for drug delivery. Chem. Commun. 2011, 47, 11077-11079. doi: 10.1039/c1cc14064g
-
[55]
Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem. Soc. Rev. 2014, 43, 4243-4268. doi: 10.1039/C3CS60433K
-
[56]
Hao, X.; Zhou, M.; Zhang, X.; Yu, J.; Jie, J.; Yu, C.; Zhang, X. Highly luminescent and photostable core–shell dye nanoparticles for high efficiency bioimaging. Chem. Commun. 2014, 50, 737-739. doi: 10.1039/C3CC47961G
-
[57]
Wang, Y. F.; Che, J.; Zheng, Y. C.; Zhao, Y. Y.; Chen, F.; Jin, S. B.; Gong, N. Q.; Xu, J.; Hu, Z. B.; Liang, X. J. Multi-stable fluorescent silica nanoparticles obtained from in situ doping with aggregation-induced emission molecules. J. Mater. Chem. B 2015, 3, 8775-8781. doi: 10.1039/C5TB01761K
-
[58]
Zhang, X.; Zhang, X.; Yang, B.; Liu, L.; Hui, J.; Liu, M.; Chen, Y.; Wei, Y. Aggregation-induced emission dye based luminescent silica nanoparticles: facile preparation, biocompatibility evaluation and cell imaging applications. RSC. Adv. 2014, 4, 10060-10066. doi: 10.1039/c3ra46076b
-
[59]
Kim, S.; Pudavar, H. E.; Bonoiu, A.; Prasad, P. N. Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging. Adv. Mater. 2007, 19, 3791-3795. doi: 10.1002/(ISSN)1521-4095
-
[60]
Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 2007, 129, 2669-2675. doi: 10.1021/ja0680257
-
[61]
Faisal, M.; Hong, Y.; Liu, J.; Yu, Y.; Lam, J. W.; Qin, A.; Lu, P.; Tang, B. Z. Fabrication of fluorescent silica nanoparticles hybridized with AIE luminogens and exploration of their applications as nanobiosensors in intracellular imaging. Chem. Eur. J. 2010, 16, 4266-4272. doi: 10.1002/chem.v16:14
-
[62]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed-Nanotechnol. 2015, 11, 313-327. doi: 10.1016/j.nano.2014.09.014
-
[63]
Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.; Wei, Y. Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. ACS. Appl. Mater. Interfaces 2013, 5, 1943-1947. doi: 10.1021/am302512u
-
[64]
Yan, D.; Lu, J.; Ma, J.; Wei, M.; Li, S.; Evans, D. G.; Duan, X. Near-infrared absorption and polarized luminescent ultrathin films based on sulfonated cyanines and layered double hydroxide. J. Phys. Chem. C 2011, 115, 7939-7946. doi: 10.1021/jp2002029
-
[65]
Li, D.; Miao, C.; Wang, X.; Yu, X.; Yu, J.; Xu, R. AIE cation functionalized layered zirconium phosphate nanoplatelets: ion-exchange intercalation and cell imaging. Chem. Commun. 2013, 49, 9549-9551. doi: 10.1039/c3cc45041d
-
[66]
Li, Z.; Lu, J.; Qin, Y.; Li, S.; Qin, S. Two dimensional restriction-induced luminescence of tetraphenyl ethylene within the layered double hydroxide ultrathin films and its fluorescence resonance energy transfer. J. Mater. Chem. C 2013, 1, 5944-5952. doi: 10.1039/c3tc31164c
-
[67]
Guan, W.; Lu, J.; Zhou, W.; Lu, C. Aggregation-induced emission molecules in layered matrices for two-color luminescence films. Chem. Commun. 2014, 50, 11895-11898. doi: 10.1039/C4CC06080F
-
[68]
Guan, W.; Wang, S.; Lu, C.; Tang, B. Z. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. Nat. Commun. 2016, 7, 11811. doi: 10.1038/ncomms11811
-
[69]
Zhong, J.; Li, Z.; Guan, W.; Lu, C. Cation-π Interaction Triggered-Fluorescence of Clay Fillers in Polymer Composites for Quantification of Three-Dimensional Macrodispersion. Anal. Chem. 2017, 89, 12472-12479. doi: 10.1021/acs.analchem.7b03575
-
[70]
Tian, R.; Zhong, J.; Lu, C.; Duan, X. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chem. Sci. 2018, 9, 218-222. doi: 10.1039/C7SC03897F
-
[71]
Ferraz, M.; Monteiro, F.; Manuel, C. Hydroxyapatite nanoparticles: a review of preparation methodologies. J. Appl. Biomater. Biom. 2004, 2, 74-80.
-
[72]
Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Fabrication, properties and applications of dense hydroxyapatite: a review. J. Func. Biomater. 2015, 6, 1099-1140. doi: 10.3390/jfb6041099
-
[73]
Haider, A.; Haider, S.; Han, S. S.; Kang, I. K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. Rsc Adv. 2017, 7, 7442-7458. doi: 10.1039/C6RA26124H
-
[74]
Liu, M.; Liu, H.; Sun, S.; Li, X.; Zhou, Y.; Hou, Z.; Lin, J. Multifunctional hydroxyapatite/Na (Y/Gd) F4: Yb3+, Er3+ composite fibers for drug delivery and dual modal imaging. Langmuir 2014, 30, 1176-1182. doi: 10.1021/la500131d
-
[75]
Wang, D.; Li, D. AIEgens-functionalised hydroxyapatite rods for explosive detection in water and pH-triggered drug delivery. Inorg. Chem. Commun. 2018, 91, 105-107. doi: 10.1016/j.inoche.2018.03.014
-
[76]
Li, D.; Liang, Z.; Chen, J.; Yu, J.; Xu, R. AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery. Dalton. Trans. 2013, 42, 9877-9883. doi: 10.1039/c3dt50243k
-
[77]
Jiang, R.; Liu, M.; Huang, H.; Huang, L.; Huang, Q.; Wen, Y.; Cao, Q. Y.; Tian, J.; Zhang, X.; Wei, Y. A novel self-catalyzed photoATRP strategy for preparation of fluorescent hydroxyapatite nanoparticles and their biological imaging. Appl. Surf. Sci. 2018, 434, 1129-1136. doi: 10.1016/j.apsusc.2017.11.039
-
[78]
Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418. doi: 10.1039/C4CS90059F
-
[79]
Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2011, 112, 1126-1162.
-
[80]
Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840. doi: 10.1039/C4CS00010B
-
[81]
Li, Q.; Wu, X.; Huang, X.; Deng, Y.; Chen, N.; Jiang, D.; Zhao, L.; Lin, Z.; Zhao, Y. Tailoring the fluorescence of AIE-active metal-organic frameworks for aqueous sensing of metal ions. ACS. Appl. Mater. Interfaces 2018, 10, 3801-3809. doi: 10.1021/acsami.7b17762
-
[82]
Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene Immobilized Metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72- and nitroaromatic explosives. Cryst. Growth. Des. 2017, 17, 6041-6048. doi: 10.1021/acs.cgd.7b01155
-
[83]
Xie, M.-H.; Cai, W.; Chen, X.; Guan, R. F.; Wang, L. M.; Hou, G. H.; Xi, X. G.; Zhang, Q. F.; Yang, X. L.; Shao, R. Novel CO2 fluorescence turn-on quantification based on a dynamic AIE-active metal-organic Framework. ACS. Appl. Mater. Interfaces 2018, 10, 2868-2873. doi: 10.1021/acsami.7b17793
-
[84]
Liu, X. G.; Wang, H.; Chen, B.; Zou, Y.; Gu, Z. G.; Zhao, Z.; Shen, L. A luminescent metal-organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem. Commun. 2015, 51, 1677-1680. doi: 10.1039/C4CC08945F
-
[85]
Shustova, N. B.; Ong, T. C.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dincǎ, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134, 15061-15070. doi: 10.1021/ja306042w
-
[86]
Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126-20129. doi: 10.1021/ja209327q
-
[87]
Wei, Z.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald Jr., R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269-8276. doi: 10.1021/ja5006866
-
[88]
Guo, Y.; Feng, X.; Han, T.; Wang, S.; Lin, Z.; Dong, Y.; Wang, B. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds. J. Am. Chem. Soc. 2014, 136, 15485-15488. doi: 10.1021/ja508962m
-
[89]
Jiang, Y.; Sun, L.; Du, J.; Liu, Y.; Shi, H.; Liang, Z.; Li, J. Multifunctional zinc metal-organic framework based on designed H4TCPP ligand with aggregation-induced emission effect: CO2 adsorption, luminescence, and sensing property. Cryst. Growth. Des. 2017, 17, 2090-2096. doi: 10.1021/acs.cgd.7b00068
-
[90]
He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079-11108. doi: 10.1021/acs.chemrev.5b00125
-
[91]
Taylor-Pashow, K. M.; Della Rocca, J.; Huxford, R. C.; Lin, W. Hybrid nanomaterials for biomedical applications. Chem. Commun. 2010, 46, 5832-5849. doi: 10.1039/c002073g
-
[92]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43, 744-764. doi: 10.1039/C3CS60273G
-
[93]
Geng, J.; Goh, C. C.; Qin, W.; Liu, R.; Tomczak, N.; Ng, L. G.; Tang, B. Z.; Liu, B. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chem. Commun. 2015, 51, 13416-9. doi: 10.1039/C5CC03603H
-
[94]
Mao, L.; Liu, M.; Xu, D.; Wan, Q.; Huang, Q.; Jiang, R.; Shi, Y.; Deng, F.; Zhang, X.; Wei, Y. Synthesis, surface modification and biological imaging of aggregation-induced emission (AIE) dye doped silica nanoparticles. Appl. Surf. Sci 2017, 403, 396-402. doi: 10.1016/j.apsusc.2017.01.234
-
[95]
Chen, J.; Liu, M.; Huang, Q.; Huang, L.; Huang, H.; Deng, F.; Wen, Y.; Tian, J.; Zhang, X.; Wei, Y. Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chem. Eng. J. 2017, 337, 82-89.
-
[96]
Mao, L.; Liu, X.; Liu, M.; Huang, L.; Xu, D.; Jiang, R.; Huang, Q.; Wen, Y.; Zhang, X.; Wei, Y. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications. Appl. Surf. Sci. 2017, 419, 188-196. doi: 10.1016/j.apsusc.2017.05.041
-
[97]
Wang, X.; Morales, A. R.; Urakami, T.; Zhang, L.; Bondar, M. V.; Komatsu, M.; Belfield, K. D. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjugate Chem. 2011, 22, 1438-1450. doi: 10.1021/bc2002506
-
[98]
Li, M.; Lam, J. W.; Mahtab, F.; Chen, S.; Zhang, W.; Hong, Y.; Xiong, J.; Zheng, Q.; Tang, B. Z. Biotin-decorated fluorescent silica nanoparticles with aggregation-induced emission characteristics: fabrication, cytotoxicity and biological applications. J. Mater. Chem. B 2013, 1, 676-684. doi: 10.1039/C2TB00155A
-
[99]
Wang, X.; Song, P.; Peng, L.; Tong, A.; Xiang, Y. Aggregation-induced emission luminogen-embedded silica nanoparticles containing DNA aptamers for targeted cell imaging. ACS Appl. Mater. Interfaces 2015, 8, 609-616. doi: 10.1021/acsami.5b09644
-
[1]
-
-
-
[1]
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
-
[2]
Shuaiwen Li , Zihui Chen , Feng Yang , Wanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793
-
[3]
Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791
-
[4]
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
-
[5]
Rui Li , Ruijie Lu , Libin Yang , Jianwen Li , Zige Guo , Qiquan Yan , Mengjun Li , Yazhuo Ni , Keying Chen , Yaoyang Li , Bo Xu , Mengzhen Cui , Zhan Li , Zhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242
-
[6]
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
-
[7]
Jianwen Zhao , Shuai Wang , Shanshan Zhao , Liwei Chen , Fangang Meng , Xuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883
-
[8]
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
-
[9]
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
-
[10]
Haibo Wan , Zhengzhong Lv , Jicai Jiang , Xuefeng Cheng , Qingfeng Xu , Haibin Shi , Jianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023
-
[11]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[12]
Hongxia Yan , Weixu Feng , Junyan Yao , Wei Tian , Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059
-
[13]
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
-
[14]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[15]
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
-
[16]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[17]
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
-
[18]
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
-
[19]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[20]
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(816)
- HTML views(35)