Citation: Liu-Cheng Mao, Xiao-Yong Zhang, Yen Wei. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 340-351. doi: 10.1007/s10118-019-2208-1 shu

Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites

  • Corresponding author: Xiao-Yong Zhang,  Yen Wei, 
  • Received Date: 31 October 2018
    Revised Date: 3 December 2018
    Accepted Date: 1 January 2018
    Available Online: 14 January 2019

  • Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently because of their important applications in the areas of biomedical imaging, chemical sensors, and light-emitting diodes (LEDs). Nevertheless, conventional fluorescence molecules suffer from aggregation-caused quenching (ACQ) when they are doped into inorganic nanomaterials. Aggregation-induced emission (AIE) is an abnormal and intriguing fluorescent phenomenon that has aroused increasing interest for various applications especially in biomedical fields. Compared with conventional organic dyes, the AIE-active molecules will emit more intense fluorescence in their aggregates or solid states. It provides an elegant route to overcome the drawbacks of conventional organic molecules. Over the past few decades, the fabrication and surface modification of various organic-inorganic luminescent composites doped with AIE-active molecules have been reported. Therefore, it is highly desirable to summarize these advances. In this review, recent advances and progress in constructing various AIEgens-doped organic-inorganic hybrid nanocomposites and their subsequent surface modification were summarized. We hope this review could further promote the research of AIE-active functional materials.
  • 加载中
    1. [1]

      Su, L.; Zhang, X.; Zhang, Y.; Rogach, A. L., Recent progress in quantum dot based white light-emitting devices. In Photoactive semiconductor nanocrystal quantum dots, Springer, 2017, pp 123−147.

    2. [2]

      Zhao, Z.; Lam, J. W.; Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem. 2012, 22, 23726-23740.  doi: 10.1039/c2jm31949g

    3. [3]

      Dai, Q.; Duty, C. E.; Hu, M. Z. Semiconductor-nanocrystals-based white light-emitting diodes. Small 2010, 6, 1577-1588.  doi: 10.1002/smll.v6:15

    4. [4]

      Zou, L.; Gu, Z.; Sun, M. Review of the application of quantum dots in the heavy-metal detection. Toxicol. Environ. Chem. 2015, 97, 477-490.  doi: 10.1080/02772248.2015.1050201

    5. [5]

      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413.  doi: 10.1021/acs.chemrev.5b00703

    6. [6]

      Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano. Today 2014, 9, 132-157.  doi: 10.1016/j.nantod.2014.02.010

    7. [7]

      Lim, S. Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.  doi: 10.1039/C4CS00269E

    8. [8]

      Wegner, K. D.; Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792-4834.  doi: 10.1039/C4CS00532E

    9. [9]

      Tao, Y.; Li, M.; Ren, J.; Qu, X. ChemInform abstract: Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636-63.  doi: 10.1039/C5CS00607D

    10. [10]

      Huang, H.; Liu, M.; Tuo, X.; Chen, J.; Mao, L.; Wen, Y.; Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging. Appl. Surf. Sci. 2018, 439, 1143-1151.  doi: 10.1016/j.apsusc.2017.12.233

    11. [11]

      Shi, Y.; Liu, M.; Deng, F.; Zeng, G.; Wan, Q.; Zhang, X.; Wei, Y. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J. Mater. Chem. B 2017, 5, 194-206.  doi: 10.1039/C6TB02249A

    12. [12]

      Huang, H.; Liu, M.; Jiang, R.; Chen, J.; Mao, L.; Wen, Y.; Tian, J.; Zhou, N.; Zhang, X.; Wei, Y. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J. Colloid Interf. Sci. 2018, 513, 198-204.  doi: 10.1016/j.jcis.2017.11.009

    13. [13]

      Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug. Deliver. Rev. 2008, 60, 1226-1240.  doi: 10.1016/j.addr.2008.03.015

    14. [14]

      Pan, Y.; Chang, T.; Marcq, G.; Liu, C.; Kiss, B.; Rouse, R.; Mach, K. E.; Cheng, Z.; Liao, J. C. In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci. Rep. 2017, 7, 9309.  doi: 10.1038/s41598-017-08591-w

    15. [15]

      Ahmad, A.; Zakaria, N. D.; Razak, K. A. In Photostability effect of silica nanoparticles encapsulated fluorescence dye, AIP. Conf. Proc, AIP Publishing, 2017, p 020010.

    16. [16]

      Long, Z.; Liu, M.; Jiang, R.; Wan, Q.; Mao, L.; Wan, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chem. Eng. J. 2017, 308, 527-534.  doi: 10.1016/j.cej.2016.09.053

    17. [17]

      Liu, M.; Ji, J.; Zhang, X.; Zhang, X.; Yang, B.; Deng, F.; Li, Z.; Wang, K.; Yang, Y.; Wei, Y. Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J. Mater. Chem. B 2015, 3, 3476-3482.  doi: 10.1039/C4TB02067G

    18. [18]

      Shi, Y.; Jiang, R.; Liu, M.; Fu, L.; Zeng, G.; Wan, Q.; Mao, L.; Deng, F.; Zhang, X.; Wei, Y. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng. C-Mater. 2017, 77, 972-977.  doi: 10.1016/j.msec.2017.04.033

    19. [19]

      Cao, Q.-y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Mater. Sci. Eng. C-Mater. 2017, 80, 578-583.  doi: 10.1016/j.msec.2017.07.006

    20. [20]

      Cao, Q.-y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Mater. Sci. Eng. C-Mater. 2017, 80, 411-416.  doi: 10.1016/j.msec.2017.06.008

    21. [21]

      Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, L.; Huang, Q.; Wan, Q.; Wen, Y.; Zhang, X.; Wei, Y. Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging. Mater. Sci. Eng. C-Mater. 2017, 78, 862-867.  doi: 10.1016/j.msec.2017.04.080

    22. [22]

      Jiang, R.; Liu, H.; Liu, M.; Tian, J.; Huang, Q.; Huang, H.; Wen, Y.; Cao, Q.-y.; Zhang, X.; Wei, Y. A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. Mater. Sci. Eng. C-Mater. 2017, 81, 416-421.  doi: 10.1016/j.msec.2017.08.048

    23. [23]

      Jiang, R.; Liu, M.; Li, C.; Huang, Q.; Huang, H.; Wan, Q.; Wen, Y.; Cao, Q.-y.; Zhang, X.; Wei, Y. Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: Synthesis, aggregation-induced emission and biological imaging. Mater. Sci. Eng. C-Mater. 2017, 80, 708-714.  doi: 10.1016/j.msec.2017.07.008

    24. [24]

      Tian, J.; Jiang, R.; Gao, P.; Xu, D.; Mao, L.; Zeng, G.; Liu, M.; Deng, F.; Zhang, X.; Wei, Y. Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid) s. Mater. Sci. Eng. C-Mater. 2017, 79, 563-569.  doi: 10.1016/j.msec.2017.05.090

    25. [25]

      Wan, Q.; Liu, M.; Mao, L.; Jiang, R.; Xu, D.; Huang, H.; Dai, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction: Self-assembly, characterization and biological imaging applications. Mater. Sci. Eng. C-Mater. 2017, 72, 352-358.  doi: 10.1016/j.msec.2016.11.058

    26. [26]

      Huang, L.; Liu, M.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules 2018, 19, 1858-1868.  doi: 10.1021/acs.biomac.8b00437

    27. [27]

      Jiang, R.; Liu, M.; Huang, H.; Mao, L.; Huang, Q.; Wen, Y.; Cao, Q.-y.; Tian, J.; Zhang, X.; Wei, Y. Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. J. Colloid Interf. Sci. 2018, 519, 137-144.  doi: 10.1016/j.jcis.2018.01.084

    28. [28]

      Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 2014, 5, 689-693.  doi: 10.1039/C3PY01272G

    29. [29]

      Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Facile fabrication and cell imaging applications of aggregation induced emission dye based fluorescent organic nanoparticles. Polym. Chem. 2013, 4, 4317-4321.  doi: 10.1039/c3py00712j

    30. [30]

      Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Polymerizable aggregation induced emission dye based fluorescent nanoparticles for cell imaging applications Polym. Chem. 2014, 5, 356-360.

    31. [31]

      Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym. Chem. 2014, 5, 399-404.  doi: 10.1039/C3PY00984J

    32. [32]

      Jiang, R.; Liu, M.; Chen, T.; Huang, H.; Huang, Q.; Tian, J.; Wen, Y.; Cao, Q. Y.; Zhang, X.; Wei, Y. Facile construction and biological imaging of cross-linked fluorescent organic nanoparticles with aggregation-induced emission feature through a catalyst-free azide-alkyne click reaction. Dyes Pigments 2018, 148, 52-60.  doi: 10.1016/j.dyepig.2017.09.005

    33. [33]

      Xu, D.; Liu, M.; Zou, H.; Huang, Q.; Huang, H.; Tian, J.; Jiang, R.; Wen, Y.; Zhang, X.; Wei, Y. Fabrication of AIE-active fluorescent organic nanoparticles through one-pot supramolecular polymerization and their biological imaging. J. Taiwan Inst. Chem. E 2017, 78, 455-461.  doi: 10.1016/j.jtice.2017.05.024

    34. [34]

      Xu, D.; Zeng, S.; Liu, M.; Chen, J.; Huang, H.; Deng, F.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of PEGylated and biodegradable fluorescent organic nanoparticles with aggregation-induced emission characteristics through direct ring-opening polymerization. J. Taiwan Inst. Chem. E 2018.

    35. [35]

      Cui, Y.; Song, T.; Yu, J.; Yang, Y.; Wang, Z.; Qian, G. Dye encapsulated metal-organic framework for warm-white LED with high color-rendering index. Adv. Funct. Mater. 2015, 25, 4796-4802.  doi: 10.1002/adfm.201501756

    36. [36]

      Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z. AIE luminogens: emission brightened by aggregation. Mater. Today 2015, 18, 365-377.  doi: 10.1016/j.mattod.2015.03.004

    37. [37]

      Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740-1741.

    38. [38]

      Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.  doi: 10.1039/c1cs15113d

    39. [39]

      Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-4353.

    40. [40]

      Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479.  doi: 10.1002/adma.201401356

    41. [41]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.

    42. [42]

      Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv. Mater. 2010, 22, 2159-2163.  doi: 10.1002/adma.v22:19

    43. [43]

      Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 2010, 20, 1858-1867.  doi: 10.1039/b921610c

    44. [44]

      Zhan, C.; You, X.; Zhang, G.; Zhang, D. Bio-/chemosensors and imaging with aggregation-induced emission luminogens. Chem. Rec. 2016, 16, 2142-2160.  doi: 10.1002/tcr.v16.4

    45. [45]

      Kwok, R. T.; Leung, C. W.; Lam, J. W.; Tang, B. Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228-4238.  doi: 10.1039/C4CS00325J

    46. [46]

      Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. J. Mater. Chem. B 2014, 2, 4398-4414.

    47. [47]

      Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 2015, 7, 11486-11508.  doi: 10.1039/C5NR01444A

    48. [48]

      Yi, X.; Li, J.; Zhu, Z.; Liu, Q.; Xue, Q.; Ding, D. In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug. Discov. Today 2017, 22, 1412-1420.  doi: 10.1016/j.drudis.2017.04.004

    49. [49]

      Wan, Q.; Huang, Q.; Liu, M.; Xu, D.; Huang, H.; Zhang, X.; Wei, Y. Aggregation-induced emission active luminescent polymeric nanoparticles: Non-covalent fabrication methodologies and biomedical applications. Appl. Mater. Today 2017, 9, 145-160.

    50. [50]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.  doi: 10.1021/ar3003464

    51. [51]

      Sun, X.; Zebibula, A.; Dong, X.; Zhang, G.; Zhang, D.; Qian, J.; He, S. Aggregation-induced emission nanoparticles encapsulated with PEGylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS. Appl. Mater. Interfaces 2018.  doi: 10.1021/acsami.8b05546

    52. [52]

      Li, D.; Yu, J. AIEgens-functionalized inorganic-organic hybrid materials: fabrications and applications. Small 2016, 12, 6478-6494.  doi: 10.1002/smll.v12.47

    53. [53]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y. P.; Chao, H. Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241-7244.  doi: 10.1021/ja502643p

    54. [54]

      Li, D.; Yu, J.; Xu, R. Mesoporous silica functionalized with an AIE luminogen for drug delivery. Chem. Commun. 2011, 47, 11077-11079.  doi: 10.1039/c1cc14064g

    55. [55]

      Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem. Soc. Rev. 2014, 43, 4243-4268.  doi: 10.1039/C3CS60433K

    56. [56]

      Hao, X.; Zhou, M.; Zhang, X.; Yu, J.; Jie, J.; Yu, C.; Zhang, X. Highly luminescent and photostable core–shell dye nanoparticles for high efficiency bioimaging. Chem. Commun. 2014, 50, 737-739.  doi: 10.1039/C3CC47961G

    57. [57]

      Wang, Y. F.; Che, J.; Zheng, Y. C.; Zhao, Y. Y.; Chen, F.; Jin, S. B.; Gong, N. Q.; Xu, J.; Hu, Z. B.; Liang, X. J. Multi-stable fluorescent silica nanoparticles obtained from in situ doping with aggregation-induced emission molecules. J. Mater. Chem. B 2015, 3, 8775-8781.  doi: 10.1039/C5TB01761K

    58. [58]

      Zhang, X.; Zhang, X.; Yang, B.; Liu, L.; Hui, J.; Liu, M.; Chen, Y.; Wei, Y. Aggregation-induced emission dye based luminescent silica nanoparticles: facile preparation, biocompatibility evaluation and cell imaging applications. RSC. Adv. 2014, 4, 10060-10066.  doi: 10.1039/c3ra46076b

    59. [59]

      Kim, S.; Pudavar, H. E.; Bonoiu, A.; Prasad, P. N. Aggregation-enhanced fluorescence in organically modified silica nanoparticles: a novel approach toward high-signal-output nanoprobes for two-photon fluorescence bioimaging. Adv. Mater. 2007, 19, 3791-3795.  doi: 10.1002/(ISSN)1521-4095

    60. [60]

      Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 2007, 129, 2669-2675.  doi: 10.1021/ja0680257

    61. [61]

      Faisal, M.; Hong, Y.; Liu, J.; Yu, Y.; Lam, J. W.; Qin, A.; Lu, P.; Tang, B. Z. Fabrication of fluorescent silica nanoparticles hybridized with AIE luminogens and exploration of their applications as nanobiosensors in intracellular imaging. Chem. Eur. J. 2010, 16, 4266-4272.  doi: 10.1002/chem.v16:14

    62. [62]

      Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed-Nanotechnol. 2015, 11, 313-327.  doi: 10.1016/j.nano.2014.09.014

    63. [63]

      Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.; Wei, Y. Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. ACS. Appl. Mater. Interfaces 2013, 5, 1943-1947.  doi: 10.1021/am302512u

    64. [64]

      Yan, D.; Lu, J.; Ma, J.; Wei, M.; Li, S.; Evans, D. G.; Duan, X. Near-infrared absorption and polarized luminescent ultrathin films based on sulfonated cyanines and layered double hydroxide. J. Phys. Chem. C 2011, 115, 7939-7946.  doi: 10.1021/jp2002029

    65. [65]

      Li, D.; Miao, C.; Wang, X.; Yu, X.; Yu, J.; Xu, R. AIE cation functionalized layered zirconium phosphate nanoplatelets: ion-exchange intercalation and cell imaging. Chem. Commun. 2013, 49, 9549-9551.  doi: 10.1039/c3cc45041d

    66. [66]

      Li, Z.; Lu, J.; Qin, Y.; Li, S.; Qin, S. Two dimensional restriction-induced luminescence of tetraphenyl ethylene within the layered double hydroxide ultrathin films and its fluorescence resonance energy transfer. J. Mater. Chem. C 2013, 1, 5944-5952.  doi: 10.1039/c3tc31164c

    67. [67]

      Guan, W.; Lu, J.; Zhou, W.; Lu, C. Aggregation-induced emission molecules in layered matrices for two-color luminescence films. Chem. Commun. 2014, 50, 11895-11898.  doi: 10.1039/C4CC06080F

    68. [68]

      Guan, W.; Wang, S.; Lu, C.; Tang, B. Z. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. Nat. Commun. 2016, 7, 11811.  doi: 10.1038/ncomms11811

    69. [69]

      Zhong, J.; Li, Z.; Guan, W.; Lu, C. Cation-π Interaction Triggered-Fluorescence of Clay Fillers in Polymer Composites for Quantification of Three-Dimensional Macrodispersion. Anal. Chem. 2017, 89, 12472-12479.  doi: 10.1021/acs.analchem.7b03575

    70. [70]

      Tian, R.; Zhong, J.; Lu, C.; Duan, X. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chem. Sci. 2018, 9, 218-222.  doi: 10.1039/C7SC03897F

    71. [71]

      Ferraz, M.; Monteiro, F.; Manuel, C. Hydroxyapatite nanoparticles: a review of preparation methodologies. J. Appl. Biomater. Biom. 2004, 2, 74-80.

    72. [72]

      Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Fabrication, properties and applications of dense hydroxyapatite: a review. J. Func. Biomater. 2015, 6, 1099-1140.  doi: 10.3390/jfb6041099

    73. [73]

      Haider, A.; Haider, S.; Han, S. S.; Kang, I. K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. Rsc Adv. 2017, 7, 7442-7458.  doi: 10.1039/C6RA26124H

    74. [74]

      Liu, M.; Liu, H.; Sun, S.; Li, X.; Zhou, Y.; Hou, Z.; Lin, J. Multifunctional hydroxyapatite/Na (Y/Gd) F4: Yb3+, Er3+ composite fibers for drug delivery and dual modal imaging. Langmuir 2014, 30, 1176-1182.  doi: 10.1021/la500131d

    75. [75]

      Wang, D.; Li, D. AIEgens-functionalised hydroxyapatite rods for explosive detection in water and pH-triggered drug delivery. Inorg. Chem. Commun. 2018, 91, 105-107.  doi: 10.1016/j.inoche.2018.03.014

    76. [76]

      Li, D.; Liang, Z.; Chen, J.; Yu, J.; Xu, R. AIE luminogen bridged hollow hydroxyapatite nanocapsules for drug delivery. Dalton. Trans. 2013, 42, 9877-9883.  doi: 10.1039/c3dt50243k

    77. [77]

      Jiang, R.; Liu, M.; Huang, H.; Huang, L.; Huang, Q.; Wen, Y.; Cao, Q. Y.; Tian, J.; Zhang, X.; Wei, Y. A novel self-catalyzed photoATRP strategy for preparation of fluorescent hydroxyapatite nanoparticles and their biological imaging. Appl. Surf. Sci. 2018, 434, 1129-1136.  doi: 10.1016/j.apsusc.2017.11.039

    78. [78]

      Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.  doi: 10.1039/C4CS90059F

    79. [79]

      Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2011, 112, 1126-1162.

    80. [80]

      Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.  doi: 10.1039/C4CS00010B

    81. [81]

      Li, Q.; Wu, X.; Huang, X.; Deng, Y.; Chen, N.; Jiang, D.; Zhao, L.; Lin, Z.; Zhao, Y. Tailoring the fluorescence of AIE-active metal-organic frameworks for aqueous sensing of metal ions. ACS. Appl. Mater. Interfaces 2018, 10, 3801-3809.  doi: 10.1021/acsami.7b17762

    82. [82]

      Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene Immobilized Metal-organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72- and nitroaromatic explosives. Cryst. Growth. Des. 2017, 17, 6041-6048.  doi: 10.1021/acs.cgd.7b01155

    83. [83]

      Xie, M.-H.; Cai, W.; Chen, X.; Guan, R. F.; Wang, L. M.; Hou, G. H.; Xi, X. G.; Zhang, Q. F.; Yang, X. L.; Shao, R. Novel CO2 fluorescence turn-on quantification based on a dynamic AIE-active metal-organic Framework. ACS. Appl. Mater. Interfaces 2018, 10, 2868-2873.  doi: 10.1021/acsami.7b17793

    84. [84]

      Liu, X. G.; Wang, H.; Chen, B.; Zou, Y.; Gu, Z. G.; Zhao, Z.; Shen, L. A luminescent metal-organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem. Commun. 2015, 51, 1677-1680.  doi: 10.1039/C4CC08945F

    85. [85]

      Shustova, N. B.; Ong, T. C.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dincǎ, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134, 15061-15070.  doi: 10.1021/ja306042w

    86. [86]

      Shustova, N. B.; McCarthy, B. D.; Dinca, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126-20129.  doi: 10.1021/ja209327q

    87. [87]

      Wei, Z.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald Jr., R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269-8276.  doi: 10.1021/ja5006866

    88. [88]

      Guo, Y.; Feng, X.; Han, T.; Wang, S.; Lin, Z.; Dong, Y.; Wang, B. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds. J. Am. Chem. Soc. 2014, 136, 15485-15488.  doi: 10.1021/ja508962m

    89. [89]

      Jiang, Y.; Sun, L.; Du, J.; Liu, Y.; Shi, H.; Liang, Z.; Li, J. Multifunctional zinc metal-organic framework based on designed H4TCPP ligand with aggregation-induced emission effect: CO2 adsorption, luminescence, and sensing property. Cryst. Growth. Des. 2017, 17, 2090-2096.  doi: 10.1021/acs.cgd.7b00068

    90. [90]

      He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079-11108.  doi: 10.1021/acs.chemrev.5b00125

    91. [91]

      Taylor-Pashow, K. M.; Della Rocca, J.; Huxford, R. C.; Lin, W. Hybrid nanomaterials for biomedical applications. Chem. Commun. 2010, 46, 5832-5849.  doi: 10.1039/c002073g

    92. [92]

      Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43, 744-764.  doi: 10.1039/C3CS60273G

    93. [93]

      Geng, J.; Goh, C. C.; Qin, W.; Liu, R.; Tomczak, N.; Ng, L. G.; Tang, B. Z.; Liu, B. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chem. Commun. 2015, 51, 13416-9.  doi: 10.1039/C5CC03603H

    94. [94]

      Mao, L.; Liu, M.; Xu, D.; Wan, Q.; Huang, Q.; Jiang, R.; Shi, Y.; Deng, F.; Zhang, X.; Wei, Y. Synthesis, surface modification and biological imaging of aggregation-induced emission (AIE) dye doped silica nanoparticles. Appl. Surf. Sci 2017, 403, 396-402.  doi: 10.1016/j.apsusc.2017.01.234

    95. [95]

      Chen, J.; Liu, M.; Huang, Q.; Huang, L.; Huang, H.; Deng, F.; Wen, Y.; Tian, J.; Zhang, X.; Wei, Y. Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chem. Eng. J. 2017, 337, 82-89.

    96. [96]

      Mao, L.; Liu, X.; Liu, M.; Huang, L.; Xu, D.; Jiang, R.; Huang, Q.; Wen, Y.; Zhang, X.; Wei, Y. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications. Appl. Surf. Sci. 2017, 419, 188-196.  doi: 10.1016/j.apsusc.2017.05.041

    97. [97]

      Wang, X.; Morales, A. R.; Urakami, T.; Zhang, L.; Bondar, M. V.; Komatsu, M.; Belfield, K. D. Folate receptor-targeted aggregation-enhanced near-IR emitting silica nanoprobe for one-photon in vivo and two-photon ex vivo fluorescence bioimaging. Bioconjugate Chem. 2011, 22, 1438-1450.  doi: 10.1021/bc2002506

    98. [98]

      Li, M.; Lam, J. W.; Mahtab, F.; Chen, S.; Zhang, W.; Hong, Y.; Xiong, J.; Zheng, Q.; Tang, B. Z. Biotin-decorated fluorescent silica nanoparticles with aggregation-induced emission characteristics: fabrication, cytotoxicity and biological applications. J. Mater. Chem. B 2013, 1, 676-684.  doi: 10.1039/C2TB00155A

    99. [99]

      Wang, X.; Song, P.; Peng, L.; Tong, A.; Xiang, Y. Aggregation-induced emission luminogen-embedded silica nanoparticles containing DNA aptamers for targeted cell imaging. ACS Appl. Mater. Interfaces 2015, 8, 609-616.  doi: 10.1021/acsami.5b09644

  • 加载中
    1. [1]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    2. [2]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    3. [3]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    4. [4]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    5. [5]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    6. [6]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    7. [7]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    8. [8]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    9. [9]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    10. [10]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    13. [13]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    14. [14]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    15. [15]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    16. [16]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    17. [17]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    18. [18]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    19. [19]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    20. [20]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

Metrics
  • PDF Downloads(0)
  • Abstract views(816)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return