Citation: Qi Yu, Ya-Long Wang, Ze-Qiang Chen, Peng-Ju Zhao, Cheng Fan, Chong Li, Ming-Qiang Zhu. Geminal Cross Coupling (GCC) Reaction for AIE Materials[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 327-339. doi: 10.1007/s10118-019-2207-2 shu

Geminal Cross Coupling (GCC) Reaction for AIE Materials

  • Corresponding author: Chong Li, chongli@hust.edu.cn Ming-Qiang Zhu, mqzhu@hust.edu.cn
  • † These authors contributed equally (Q.Y. and Y.L.W.)
  • Received Date: 30 October 2018
    Revised Date: 6 December 2018
    Accepted Date: 9 December 2018
    Available Online: 11 January 2019

  • Tetraphenylethylene (TPE) derivatives are typical aggregation-induced emission (AIE) molecules, which have been widely investigated and applicated. The Rathore’s procedures and McMurry reaction are the two frequently used methods for synthesizing the TPE derivatives. The complex processes and low tolerance of active function groups make the TPE with limited structures and properties in some degree. Very recently, a novel strategy, named geminal cross coupling (GCC) reaction, is developed for designing and synthesizing various topological small molecules and polymers with rich optical properties beyond simple TPE compounds, and becomes a powerful synthesis method to AIE materials. This review overviews the current progresses of AIE molecules and polymers prepared by GCC as well as their applications. We believe that GCC reaction will have a bright future in the development of the next generation of tetraarylethylene (TAE)-kind AIE materials.
  • 加载中
    1. [1]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740-1741.

    2. [2]

      An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc. 2002, 124, 14410-14415.  doi: 10.1021/ja0269082

    3. [3]

      Tang, B. Z.; Zhan, X.; Yu, G.; Sze Lee, P. P.; Liu, Y.; Zhu, D. Efficient blue emission from siloles. J. Mater. Chem. 2001, 11, 2974-2978.  doi: 10.1039/b102221k

    4. [4]

      Li, Z.; Dong, Y.; Mi, B.; Tang, Y.; Häussler, M.; Tong, H.; Dong, Y.; Lam, J. W. Y.; Ren, Y.; Sung, H. H. Y.; Wong, K. S.; Gao, P.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials. J. Phys. Chem. B 2005, 109, 10061-10066.  doi: 10.1021/jp0503462

    5. [5]

      Zhao, Z.; Chen, S.; Lam, J. W. Y.; Jim, C. K. W.; Chan, C. Y. K.; Wang, Z.; Lu, P.; Deng, C.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Steric hindrance, electronic communication, and energy transfer in the photo- and electroluminescence processes of aggregation-induced emission luminogens. J. Phys. Chem. C 2010, 114, 7963-7972.  doi: 10.1021/jp910728x

    6. [6]

      Liu, Y.; Chen, S.; Lam, J. W. Y.; Lu, P.; Kwok, R. T. K.; Mahtab, F.; Kwok, H. S.; Tang, B. Z. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem. Mater. 2011, 23, 2536-2544.  doi: 10.1021/cm2003269

    7. [7]

      Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J. Z.; Tang, B. Z. Specific detection of d-glucose by a tetraphenylethene-based fluorescent sensor. J. Am. Chem. Soc. 2011, 133, 660-663.  doi: 10.1021/ja107086y

    8. [8]

      Liu, J.; Zhong, Y.; Lam, J. W. Y.; Lu, P.; Hong, Y.; Yu, Y.; Yue, Y.; Faisal, M.; Sung, H. H. Y.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Hyperbranched conjugated polysiloles: synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules 2010, 43, 4921-4936.  doi: 10.1021/ma902432m

    9. [9]

      Chen, S.; Liu, J.; Liu, Y.; Su, H.; Hong, Y.; Jim, C. K. W.; Kwok, R. T. K.; Zhao, N.; Qin, W.; Lam, J. W. Y.; Wong, K. S.; Tang, B. Z. An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: Extending the pH sensing range by " switch + knob” effect. Chem. Sci. 2012, 3, 1804-1809.  doi: 10.1039/c2sc01108e

    10. [10]

      Peng, L.; Zhang, G.; Zhang, D.; Xiang, J.; Zhao, R.; Wang, Y.; Zhu, D. A Fluorescence " turn-on” ensemble for acetylcholinesterase activity assay and inhibitor screening. Org. Lett. 2009, 11, 4014-4017.  doi: 10.1021/ol9016723

    11. [11]

      Hong, Y.; Meng, L.; Chen, S.; Leung, C. W. T.; Da, L. T.; Faisal, M.; Silva, D.-A.; Liu, J.; Lam, J. W. Y.; Huang, X.; Tang, B. Z. Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 1680-1689.  doi: 10.1021/ja208720a

    12. [12]

      Shi, H.; Liu, J.; Geng, J.; Tang, B. Z.; Liu, B. Specific detection of integrin αvβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 9569-9572.  doi: 10.1021/ja302369e

    13. [13]

      Shi, H.; Kwok, R. T. K.; Liu, J.; Xing, B.; Tang, B. Z.; Liu, B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 17972-17981.  doi: 10.1021/ja3064588

    14. [14]

      Yuan, Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted theranostic platinum (iv) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc. 2014, 136, 2546-2554.  doi: 10.1021/ja411811w

    15. [15]

      Dong, Y.; Xu, B.; Zhang, J.; Tan, X.; Wang, L.; Chen, J.; Lv, H.; Wen, S.; Li, B.; Ye, L.; Zou, B.; Tian, W. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew. Chem., Int. Ed. 2012, 51, 10782-10785.  doi: 10.1002/anie.v51.43

    16. [16]

      An, B.-K.; Gierschner, J.; Park, S. Y. π-Conjugated cyanostilbene derivatives: A unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc. Chem. Res. 2012, 45, 544-554.  doi: 10.1021/ar2001952

    17. [17]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.  doi: 10.1021/ar3003464

    18. [18]

      Banerjee, M.; Emond, S. J.; Lindeman, S. V.; Rathore, R. Practical synthesis of unsymmetrical tetraarylethylenes and their application for the preparation of[triphenylethylene−spacer−triphenylethylene] triads. J. Org. Chem. 2007, 72, 8054-8061.  doi: 10.1021/jo701474y

    19. [19]

      McMurry, J. E.; Krepski, L. R. Synthesis of unsymmetrical olefins by titanium(0) induced mixed carbonyl coupling. Some comments on the mechanism of the pinacol reaction. J. Org. Chem. 1976, 41, 3929-3930.

    20. [20]

      McMurry, J. E. Titanium-induced dicarbonyl-coupling reactions. Acc. Chem. Res. 1983, 16, 405-411.  doi: 10.1021/ar00095a003

    21. [21]

      Duan, X. F.; Zeng, J.; Lü, J. W.; Zhang, Z. B. Insights into the general and efficient cross McMurry reactions between ketones. J. Org. Chem. 2006, 71, 9873-9876.  doi: 10.1021/jo061644d

    22. [22]

      Zhang, G.-F.; Wang, H.; Aldred, M. P.; Chen, T.; Chen, Z. Q.; Meng, X.; Zhu, M. Q. General synthetic approach toward geminal-substituted tetraarylethene fluorophores with tunable emission properties: X-ray crystallography, aggregation-induced emission and piezofluorochromism. Chem. Mater. 2014, 26, 4433-4446.  doi: 10.1021/cm501414b

    23. [23]

      Corey E. J. and Fuchs P. L. A synthetic method for formyl → ethynyl conversion (RCHO → RC≡CH or RC≡CR'). Tetrahedron Letters 1972, 36, 3769-3772.

    24. [24]

      Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479.  doi: 10.1002/adma.201401356

    25. [25]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-4353.

    26. [26]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.  doi: 10.1039/c1cs15113d

    27. [27]

      Hu, R.; Leung, N. L. C.; Tang, B. Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494-4562.  doi: 10.1039/C4CS00044G

    28. [28]

      Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem. 2010, 20, 1858-1867.  doi: 10.1039/b921610c

    29. [29]

      Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z. Click Synthesis, Aggregation-induced emission, e/z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc. 2012, 134, 9956-9966.  doi: 10.1021/ja208883h

    30. [30]

      Shi, J.; Zhao, W.; Li, C.; Liu, Z.; Bo, Z.; Dong, Y.; Dong, Y.; Tang, B. Z. Switching emissions of two tetraphenylethene derivatives with solvent vapor, mechanical, and thermal stimuli. Chin. Sci. Bull. 2013, 58, 2723-2727.  doi: 10.1007/s11434-013-5868-1

    31. [31]

      Zhang, G. F.; Chen, Z. Q.; Aldred, M. P.; Hu, Z.; Chen, T.; Huang, Z.; Meng, X.; Zhu, M. Q. Direct validation of the restriction of intramolecular rotation hypothesis via the synthesis of novel ortho-methyl substituted tetraphenylethenes and their application in cell imaging. Chem. Commun. 2014, 50, 12058-12060.  doi: 10.1039/C4CC04241G

    32. [32]

      Zhang, G. F.; Aldred, M. P.; Chen, Z. Q.; Chen, T.; Meng, X.; Zhu, M.-Q. Efficient green-red piezofluorochromism of bisanthracene-modified dibenzofulvene. RSC Adv. 2015, 5, 1079-1082.  doi: 10.1039/C4RA10067K

    33. [33]

      Gabr, M. T.; Pigge, F. C. Synthesis and aggregation-induced emission properties of pyridine and pyridinium analogues of tetraphenylethylene. RSC Adv. 2015, 5, 90226-90234.  doi: 10.1039/C5RA18724A

    34. [34]

      Gabr, M. T.; Pigge, F. C. A selective fluorescent sensor for Zn2+ based on aggregation-induced emission (AIE) activity and metal chelating ability of bis(2-pyridyl)diphenylethylene. Dalton Trans. 2016, 45, 14039-14043.  doi: 10.1039/C6DT02657E

    35. [35]

      Reedy, J. L.; Hedlund, D. K.; Gabr, M. T.; Henning, G. M.; Pigge, F. C.; Schultz, M. K. Synthesis and evaluation of tetraarylethylene-based mono-, bis-, and tris(pyridinium) derivatives for image-guided mitochondria-specific targeting and cytotoxicity of metastatic melanoma cells. Bioconjugate Chem. 2016, 27, 2424-2430.  doi: 10.1021/acs.bioconjchem.6b00394

    36. [36]

      Liu, J. Z.; Lam, J. W. Y.; Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 2009, 109, 5799-5867.  doi: 10.1021/cr900149d

    37. [37]

      Heeger, A. J. Semiconducting polymers: The third generation. Chem. Soc. Rev. 2010, 39, 2354-2371.  doi: 10.1039/b914956m

    38. [38]

      Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109, 897-1091.  doi: 10.1021/cr000013v

    39. [39]

      Feng, X.; Liu, L.; Wang, S.; Zhu, D. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010, 39, 2411-2419.  doi: 10.1039/b909065g

    40. [40]

      Zhang, K.; Hu, Z.; Sun, C.; Wu, Z.; Huang, F.; Cao, Y. Toward solution-processed high-performance polymer solar cells: From material design to device engineering. Chem. Mater. 2016, 29, 141-148.

    41. [41]

      Alvarez, A.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A.; Salinas-Castillo, A. Fluorescent conjugated polymers for chemical and biochemical sensing. TrAC, Trends Anal. Chem. 2011, 30, 1513-1525.  doi: 10.1016/j.trac.2011.04.017

    42. [42]

      Chen, M.; Shang, J.; Wang, Y.; Wu, K.; Kuttner, J.; Hilt, G.; Hieringer, W.; Gottfried, J. M. On-surface synthesis and characterization of honeycombene oligophenylene macrocycles. ACS Nano 2017, 11, 134-143.  doi: 10.1021/acsnano.6b05709

    43. [43]

      Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012-8031.  doi: 10.1039/c3cs60160a

    44. [44]

      Wu, C. F.; Szymanski, C.; McNeill, J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 2006, 22, 2956-2960.  doi: 10.1021/la060188l

    45. [45]

      Padmanaban, G.; Ramakrishnan, S. Fluorescence spectroscopic studies of solvent- and temperature-induced conformational transition in segmented poly 2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene (MEHPPV). J. Phys. Chem B 2004, 108, 14933-14941.  doi: 10.1021/jp048994t

    46. [46]

      Pecher, J.; Mecking, S. Nanoparticles of conjugated polymers. Chem. Rev. 2010, 110, 6260-6279.  doi: 10.1021/cr100132y

    47. [47]

      Pescitelli, G.; Omar, O. H.; Operamolla, A.; Farinola, G. M.; Di Bari, L. Chiroptical properties of glucose-substituted poly(p-phenylene-ethynylene)s in solution and aggregate state. Macromolecules 2012, 45, 9626-9630.  doi: 10.1021/ma301919u

    48. [48]

      Tan, C. Y.; Pinto, M. R.; Schanze, K. S. Photophysics, aggregation and amplified quenching of a water-soluble poly(phenylene ethynylene). Chem. Commun. 2002, 446-447.

    49. [49]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.  doi: 10.1021/acs.chemrev.5b00263

    50. [50]

      Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452-7476.  doi: 10.1039/c8cs00444g

    51. [51]

      Chen, Z. Q.; Chen, T.; Liu, J. X.; Zhang, G. F.; Li, C.; Gong, W. L.; Xiong, Z. J.; Xie, N. H.; Tang, B. Z.; Zhu, M.-Q. Geminal Cross-Coupling of 1,1-Dibromoolefins Facilitating Multiple Topological pi-Conjugated Tetraarylethenes. Macromolecules 2015, 48, 7823-7835.  doi: 10.1021/acs.macromol.5b01602

    52. [52]

      Chen, T.; Yin, H.; Chen, Z. Q.; Zhang, G. F.; Xie, N. H.; Li, C.; Gong, W. L.; Tang, B. Z.; Zhu, M. Q. Monodisperse aie-active conjugated polymer nanoparticles via dispersion polymerization using geminal cross-coupling of 1,1-dibromoolefins. Small 2016, 12, 6547-6552.  doi: 10.1002/smll.v12.47

    53. [53]

      Zhou, Q. Y.; Xin, B.; Wang, Y. L.; Li, C.; Chen, Z. Q.; Yu, Q.; Huang, Z. L.; Zhu, M. Q. Geminal cross-coupling synthesis, ion-induced emission and lysosome imaging of cationic tetraarylethene oligoelectrolytes. Chem. Commun. 2018, 54, 3617-3620.  doi: 10.1039/C8CC00533H

    54. [54]

      Iyoda, M.; Yamakawa, J.; Rahman, M. J. Conjugated macrocycles: Concepts and applications. Angew. Chem., Int. Ed. 2011, 50, 10522-10553.  doi: 10.1002/anie.201006198

    55. [55]

      Zhang, W.; Moore, J. S. Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. Angew. Chem., Int. Ed. 2006, 45, 4416-4439.  doi: 10.1002/(ISSN)1521-3773

    56. [56]

      Luo, J.; Yan, Q.; Zhou, Y.; Li, T.; Zhu, N.; Bai, C.; Cao, Y.; Wang, J.; Pei, J.; Zhao, D. A photoswitch based on self-assembled single microwire of a phenyleneethynylene macrocycle. Chem. Commun. 2010, 46, 5725-5727.  doi: 10.1039/c0cc00739k

    57. [57]

      Reuter, R.; Wegner, H. A. Switchable 3D networks by light controlled pi-stacking of azobenzene macrocycles. Chem. Commun. 2013, 49, 146-148.  doi: 10.1039/C2CC35974J

    58. [58]

      Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 2010, 110, 1857-1959.  doi: 10.1021/cr900327d

    59. [59]

      Li, W. S.; Aida, T. Dendrimer porphyrins and phthalocyanines. Chem. Rev. 2009, 109, 6047-6076.  doi: 10.1021/cr900186c

    60. [60]

      Grayson, S. M.; Frechet, J. M. J. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 2001, 101, 3819-3867.  doi: 10.1021/cr990116h

    61. [61]

      Bosman, A. W.; Janssen, H. M.; Meijer, E. W. About dendrimers: Structure, physical properties, and applications. Chem. Rev. 1999, 99, 1665-1688.  doi: 10.1021/cr970069y

    62. [62]

      Baier, M. C.; Huber, J.; Mecking, S. Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J. Am. Chem. Soc. 2009, 131, 14267-14273.  doi: 10.1021/ja905077c

    63. [63]

      Fischer, C. S.; Baier, M. C.; Mecking, S. Enhanced brightness emission-tuned nanoparticles from heterodifunctional polyfluorene building blocks. J. Am. Chem. Soc. 2013, 135, 1148-54.  doi: 10.1021/ja311497e

    64. [64]

      Muenmart, D.; Foster, A. B.; Harvey, A.; Chen, M. T.; Navarro, O.; Promarak, V.; McCairn, M. C.; Behrendt, J. M.; Turner, M. L. Conjugated polymer nanoparticles by suzuki-miyaura cross-coupling reactions in an emulsion at room temperature. Macromolecules 2014, 47, 6531-6539.  doi: 10.1021/ma501402h

    65. [65]

      Wu, X.; Li, H.; Xu, B.; Tong, H.; Wang, L. Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity. Polym. Chem. 2014, 5, 4521-4525.  doi: 10.1039/c4py00305e

    66. [66]

      Chen, Y.; Bai, Y.; Han, Z.; He, W.; Guo, Z. Photoluminescence imaging of Zn2+ in living systems. Chem. Soc. Rev. 2015, 44, 4517-4546.  doi: 10.1039/C5CS00005J

    67. [67]

      Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261-1296.  doi: 10.1039/C1CS15173H

    68. [68]

      Yuan, W. Z.; Hu, R.; Lam, J. W. Y.; Xie, N.; Jim, C. K. W.; Tang, B. Z. Conjugated hyperbranched poly(aryleneethynylene)s: synthesis, photophysical properties, superquenching by explosive, photopatternability, and tunable high refractive indices. Chem. Eur. J. 2012, 18, 2847-2856.  doi: 10.1002/chem.201103151

    69. [69]

      Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Synthesis, luminescence properties and explosives sensing with 1,1-tetraphenylsilole- and 1,1-silafluorene-vinylene polymers. Chem. Mater. 2007, 19, 6459-6470.  doi: 10.1021/cm702299g

    70. [70]

      Zhang, J.; Liu, Z.; Lian, P.; Qian, J.; Li, X.; Wang, L.; Fu, W.; Chen, L.; Wei, X.; Li, C. Selective imaging and cancer cell death via pH switchable near-infrared fluorescence and photothermal effects. Chem. Sci. 2016, 7, 5995-6005.  doi: 10.1039/C6SC00221H

    71. [71]

      Cai, Y.; Gui, C.; Samedov, K.; Su, H.; Gu, X.; Li, S.; Luo, W.; Sung, H. H. Y.; Lam, J. W. Y.; Kwok, R. T. K.; Williams, I. D.; Qin, A.; Tang, B. Z. An acidic pH independent piperazine-TPE AIEgen as a unique bioprobe for lysosome tracing. Chem. Sci. 2017, 8, 7593-7603.  doi: 10.1039/C7SC03515B

    72. [72]

      Wang, H.; Fang, B.; Xiao, L.; Li, D.; Zhou, L.; Kong, L.; Yu, Y.; Li, X.; Wu, Y.; Hu, Z. A water-soluble "turn-on" fluorescent probe for specifically imaging mitochondria viscosity in living cells. Spectrochim. Acta, Part A 2018, 203, 127-131.  doi: 10.1016/j.saa.2018.05.121

    73. [73]

      Lee, S. C.; Heo, J.; Woo, H. C.; Lee, J. A.; Seo, Y. H.; Lee, C. L.; Kim, S.; Kwon, O. P. Fluorescent molecular rotors for viscosity sensors. Chem. Eur. J. 2018, 24, 13706-13718.  doi: 10.1002/chem.201801389

    74. [74]

      Luo, Z. J.; Liu, B.; Zhu, K. N.; Huang, Y. Y.; Pan, C. J.; Wang, B. F.; Wang, L. An environment-sensitive fluorescent probe for quantification of human serum albumin: Design, sensing mechanism, and its application in clinical diagnosis of hypoalbuminemia. Dyes Pigm. 2018, 152, 60-66.  doi: 10.1016/j.dyepig.2018.01.033

    75. [75]

      Gong, W. L.; Yan, J.; Zhao, L. X.; Li, C.; Huang, Z. L.; Tang, B. Z.; Zhu, M. Q. Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP. Photochem. Photobiol. Sci. 2016, 15, 1433-1441.  doi: 10.1039/C6PP00293E

    76. [76]

      Liu, J. X.; Xin, B.; Li, C.; Xie, N. H.; Gong, W. L.; Huang, Z. L.; Zhu, M. Q. PEGylated perylenemonoimide-dithienylethene for super-resolution imaging of liposomes. ACS Appl. Mater. Interfaces 2017, 9, 10338-10343.  doi: 10.1021/acsami.6b15076

    77. [77]

      Yan, J.; Zhao, L. X.; Li, C.; Hu, Z.; Zhang, G. F.; Chen, Z. Q.; Chen, T.; Huang, Z. L.; Zhu, J.; Zhu, M. Q. Optical nanoimaging for block copolymer self-assembly. J. Am. Chem. Soc. 2015, 137, 2436-2439.  doi: 10.1021/ja512189a

    78. [78]

      Zhou, Q. Y.; Fan, C.; Li, C.; Wang, Y. L.; Chen, Z. Q.; Yu, Q.; Zhu, M. Q. AIE-based universal super-resolution imaging for inorganic and organic nanostructures. Mater. Horiz. 2018, 5, 474-479.  doi: 10.1039/C8MH00089A

  • 加载中
    1. [1]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    2. [2]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    3. [3]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    4. [4]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    5. [5]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    6. [6]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    7. [7]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    10. [10]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    11. [11]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    14. [14]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    15. [15]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    16. [16]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    17. [17]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    18. [18]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    19. [19]

      Zhihui ZhangRu SunChong BianHongbo WangZhen ZhaoPanpan LvJianzhong LuHaixin ZhangHulie ZengYuanyuan ChenZhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784

    20. [20]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

Metrics
  • PDF Downloads(0)
  • Abstract views(933)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return