Citation: Lei-Jing Liu, Wen Liu, Guang Ji, Zhi-Yuan Wu, Bin Xu, Jun Qian, Wen-Jing Tian. NIR Emission Nanoparticles Based on FRET Composed of AIE Luminogens and NIR Dyes for Two-photon Fluorescence Imaging[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 401-408. doi: 10.1007/s10118-019-2206-3 shu

NIR Emission Nanoparticles Based on FRET Composed of AIE Luminogens and NIR Dyes for Two-photon Fluorescence Imaging

  • Corresponding author: Jun Qian, qianjun@zju.edu.cn Wen-Jing Tian, wjtian@jlu.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 24 October 2018
    Revised Date: 3 December 2018
    Accepted Date: 1 January 2018
    Available Online: 10 January 2019

  • Near-infrared (NIR) nanoparticles (NPs) based on fluorescence resonance energy transfer (FRET) were prepared by co-encapsulation of a red aggregation-induced emission (AIE) molecule, 2-(4-bromophenyl)-3-(4-(4-(diphenylamino)styryl)phenyl)fumaronitrile (TB), and a commercial NIR fluorescence dye, silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) with an amphiphilic polymer poly(styrene-co-maleic anhydride) (PSMA). The surface of the NPs, PSMA@TB/NIR775, was modified with poly(ethylene glycol) (PEG) to increase the in vivo biocompatibility of the NPs. The PSMA@TB/NIR775 NPs showed a strong NIR (780 nm) narrow emission and excellent two-photon absorption property. Moreover, the NPs exhibited good monodispersity, stability, and low cytotoxicity. Under the excitation of a 1040 nm femtosecond (fs) laser, the emission peaks at 680 nm of TB and 780 nm of NIR775 excited by FRET were obtained. We utilized PSMA@TB/NIR775 NPs as fluorescent contrast agents for two-photon excited NIR microscopic imaging, and good NIR imaging effect of mouse brain vasculature was obtained with the imaging depth of about 150 µm. The FRET strategy by co-encapsulating AIE molecule and NIR dye will be helpful in preparing more narrow emission NIR probes for deep-tissue biological imaging.
  • 加载中
    1. [1]

      Yan, L. L.; Zhang, Y.; Ji, G.; Ma, L.; Chen, J. L.; Xu, B.; Tian, W. J. Multifunctional polymer nanoparticles, ultra bright near-infrared fluorescence and strong magnetization and their biological applications. RSC Adv. 2016, 6, 65426-65433.  doi: 10.1039/C6RA07520G

    2. [2]

      Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Efficient near-infrared AIE nanoparticles for cell imaging. Acta Chimica Sinica (in Chinese) 2016, 74, 917-922.  doi: 10.6023/A16080430

    3. [3]

      Zhang, F. L.; Di, Y. Z.; Li, Y.; Qi, Q. K.; Qian, J. Y.; Fu, X. Q.; Xu, B.; Tian, W. J. Highly efficient far red/near-infrared fluorophores with aggregation-induced emission for bioimaging. Dyes Pigments 2017, 142, 491-498.  doi: 10.1016/j.dyepig.2017.04.004

    4. [4]

      Kobat, D.; Horton, N. G.; Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 2011, 16(10), 106014.  doi: 10.1117/1.3646209

    5. [5]

      Qian, J.; Wang, D.; Cai, F. H.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33(19), 4851-4860.  doi: 10.1016/j.biomaterials.2012.02.053

    6. [6]

      Lakowicz, J. R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 2006, 1(1), 5-33.  doi: 10.1007/s11468-005-9002-3

    7. [7]

      Hinds, S.; Myrskog, S.; Levina, L.; Koleilat, G.; Yang, J.; Kelley, S. O.; Sargent, E. H. NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J. Am. Chem. Soc. 2007, 129(23), 7218-7219.  doi: 10.1021/ja070525s

    8. [8]

      Yong K T, Roy I, Ding H, Bergey, E. J.; Prasad, P. N. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small 2009, 5(17), 1997-2004.  doi: 10.1002/smll.v5:17

    9. [9]

      Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe) ZnS core-shell quantum dots, synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101(46), 9463-9475.  doi: 10.1021/jp971091y

    10. [10]

      Shi, L. J.; Zhu, C. N.; He, H.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W.; Tian, Z. Q. Near-infrared Ag2Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Adv. 2016, 6(44), 38183-38186.  doi: 10.1039/C6RA04987G

    11. [11]

      Wu, C. X.; Zhang, Y. J.; Li, Z.; Li, C. Y.; Wang, Q. B. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 2016, 8, 12531-12539.  doi: 10.1039/C6NR00060F

    12. [12]

      Han, H. J.; Wang, H. B.; Chen, Y. J.; Li, Z. H.; Wang, Y.; Jin, Q.; Ji, J. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. Nanoscale 2016, 8, 283-291.  doi: 10.1039/C5NR06734K

    13. [13]

      Luo, S. L.; Zhang, E. L.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127-7138.  doi: 10.1016/j.biomaterials.2011.06.024

    14. [14]

      Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W.; Nie, S. M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63-72.  doi: 10.1016/j.copbio.2004.11.003

    15. [15]

      Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70.  doi: 10.1016/j.cbpa.2009.10.022

    16. [16]

      Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339-1386.  doi: 10.1021/cr0501339

    17. [17]

      Brasseur, N.; Nguyen, T. L.; Langlois, R.; Ouellet, R.; Marengo, S.; Houde, D.; Lier van, J. E. Synthesis and photodynamic activities of silicon 2,3-naphthalocyanine derivatives. J. Med. Chem. 1994, 37, 415-420.  doi: 10.1021/jm00029a014

    18. [18]

      Birks, J. B. in Photophysics of aromatic molecules, Wiley, London, UK, 1970.

    19. [19]

      Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P.; Liu, Y.; Zhu, D. B. Efficient blue emission from siloles. J. Mater. Chem. 2001, 11, 2974-2978.  doi: 10.1039/b102221k

    20. [20]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001. 1740-1741.

    21. [21]

      Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission, phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-4353.

    22. [22]

      Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429−5479.  doi: 10.1002/adma.201401356

    23. [23]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441−2453.  doi: 10.1021/ar3003464

    24. [24]

      Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361−5388.  doi: 10.1039/c1cs15113d

    25. [25]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar. Chem. Rev. 2015, 115, 11718−11940.  doi: 10.1021/acs.chemrev.5b00263

    26. [26]

      Zhang, X. Y.; Wang, K.; Liu, M. Y.; Zhang, X. Q.; Tao, L.; Chen, Y. W.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 2015, 7, 11486-11508.  doi: 10.1039/C5NR01444A

    27. [27]

      Yan, L. L.; Zhang, Y.; Xu, B.; Tian, W. J. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8(5), 2471-2487.  doi: 10.1039/C5NR05051K

    28. [28]

      Zhang, Y.; Chen, Y. J.; Li, X.; Zhang, J. B.; Chen, J. L.; Xu, B.; Fu, X. Q.; Tian, W. J. Folic acid-functionalized AIE Pdots based on amphiphilic PCL-b-PEG for targeted cell imaging. Polym. Chem. 2014, 5, 3824-3830.  doi: 10.1039/C4PY00075G

    29. [29]

      Zhang, X. Q.; Zhang, X. Y.; Wang, S. Q.; Liu, M. Y.; Tao, L.; Wei, Y. Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale 2013, 5, 147-150.  doi: 10.1039/C2NR32698A

    30. [30]

      Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771-779.  doi: 10.1002/adfm.201102191

    31. [31]

      Geng, J. L.; Li, K.; Ding, D.; Zhang, X. H.; Qin, W.; Liu, J. Z.; Tang, B. Z.; Liu, B. Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. Small 2012, 8, 3655-3663.  doi: 10.1002/smll.v8.23

    32. [32]

      Geng, J. L.; Li, K.; Pu, K. Y.; Ding, D.; Liu, B. Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 2013, 9, 2012-2019.  doi: 10.1002/smll.v9.11

    33. [33]

      Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J. L.; Liu, R. R.; Liu, J. Z.; Zhang, X. H.; Liu, H. W.; Liu, B. TangPhotostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci. Rep. 2013, 3, 1150.  doi: 10.1038/srep01150

    34. [34]

      Wang, Z. L.; Yan, L. L.; Zhang, L.; Chen, Y. J.; Li, H.; Zhang, J. B.; Zhang, Y.; Li, X.; Xu, B.; Fu, X. Q.; Sun, Z. C.; Tian, W. J. Ultra bright red AIE dots for cytoplasm and nuclear imaging. Polym. Chem. 2014, 5, 7013-7020.  doi: 10.1039/C4PY00764F

    35. [35]

      Zhang, Y.; Chang, K. W.; Xu, B.; Chen, J. L.; Yan, L. L.; Ma, S. Q.; Wu, C. F.; Tian, W. J. Highly efficient near-infrared organic dots based on novel AEE fluorogen for specific cancer cell imaging. RSC Adv. 2015, 5, 36837-36844.  doi: 10.1039/C5RA04669F

    36. [36]

      Wang, L.; Tan, W. H. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano let. 2006, 6(1), 84-88.  doi: 10.1021/nl052105b

    37. [37]

      Zhang, J.; Lakowicz, J. R. A model for DNA detection by metal-enhanced fluorescence from immobilized silver nanoparticles on solid substrate. J. Phys. Chem. B 2006, 110(5), 2387-2392.  doi: 10.1021/jp055370u

    38. [38]

      Jin, Y. H.; Ye, F. M.; Zeigler, M.; Wu, C. F.; Chiu, D. T. Near-infrared fluorescent dye-doped semiconducting polymer dots. ACS nano 2011, 5(2), 1468-1475.  doi: 10.1021/nn103304m

    39. [39]

      Chung, C. Y. S.; Yam, V. W. W. Selective label-free detection of G-quadruplex structure of human telomere by emission spectral changes in visible-and-NIR region under physiological condition through the FRET of a two-component PPE-SO3--Pt(II) complex ensemble with Pt center dot center dot center dot Pt, electrostatic and pi-pi interactions. Chem. Sci. 2013, 4(1), 377-387.  doi: 10.1039/C2SC20897K

    40. [40]

      Zhang, X. J.; Yu, J. B.; Rong, Y. ; Ye, F. M.; Chiu, D. T.; Uvdal, K. High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy. Chem. Sci. 2013, 4(5), 2143-2151.  doi: 10.1039/c3sc50222h

    41. [41]

      Wagh, A.; Qian, S. Y.; Law, B. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging. Bioconjugate chem. 2012, 23(5), 981-992.  doi: 10.1021/bc200637h

    42. [42]

      Geng, J. L.; Zhu, Z. S.; Qin, W.; Ma, L.; Hu, Y.; Gurzadyan, G. G.; Tang, B. Z.; Liu, B. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging. Nanoscale 2014, 6, 939-945.  doi: 10.1039/C3NR04243J

    43. [43]

      Xie, Z. Q.; Yang, B.; Xie, W. J.; Liu, L. L.; Shen, F. Z.; Wang, H. A.; Yang, X. Y.; Wang, Z. M.; Li, Y. P.; Hanif, M.; Yang, G. D.; Ye, L.; Ma, Y. G. A class of nonplanar conjugated compounds with aggregation-induced emission, structural and optical properties of 2,5-diphenyl-1,4-distyrylbenzene derivatives with all cis double bonds. J. Phys. Chem. B 2006, 110(42), 20993-21000.  doi: 10.1021/jp064069q

    44. [44]

      Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H.; Wu, J. Z.; Yuan, J.; Zhang, B.; Tao, Z. M.; Fukunaga, C.; Dai, H. J. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 2014, 5, 4206.  doi: 10.1038/ncomms5206

    45. [45]

      Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3(10), 793-795.  doi: 10.1038/nmeth929

    46. [46]

      Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313(5793), 1642-1645.  doi: 10.1126/science.1127344

    47. [47]

      Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2001, 2(11), 764-774.  doi: 10.1034/j.1600-0854.2001.21104.x

    48. [48]

      Chen, B.; Feng, G. X.; He, B. R.; Goh, C.; Xu, S. D.; Ramos-Ortiz, G.; Aparicio-Ixta, L.; Zhou, J.; Ng, L. G.; Zhao, Z. J.; Liu, B.; Tang, B. Z. Silole-based red fluorescent organic dots for bright two-photon fluorescence in vitro cell and in vivo blood vessel imaging. Small 2016, 12, 782-792.  doi: 10.1002/smll.v12.6

    49. [49]

      Lou, X. D.; Zhao, Z. J.; Tang, B. Z. Organic dots based on AIEgens for Two-photon fluorescence bioimaging. Small 2016, 12, 6430-6450.  doi: 10.1002/smll.v12.47

    50. [50]

      Zhen, S. J.; Wang, S. W.; Li, S. W.; Luo, W. W.; Gao, M.; Ng, L. G.; Goh, C. C.; Qin, A. J.; Zhao, Z. J.; Liu, B.; Tang, B. Z. Efficient red/near-infrared fluorophores based on Benzo[1,2-b:4,5-b']dithiophene 1,1, 5,5-tetraoxide for targeted photodynamic therapy and in vivo two-photon fluorescence bioimaging. Adv. Funct. Mater. 2018, 28, 1706945.  doi: 10.1002/adfm.v28.13

    51. [51]

      Shen, X. Y.; Yuan, W. Z.; Liu, Y.; Zhao, Q. L.; Lu, P.; Ma, Y. G.; Williams, I. D.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. Fumaronitrile-based fluorogen, red to near-infrared fluorescence, aggregation-induced emission, solvatochromism, and twisted intramolecular charge transfer. J. Phys. Chem. C 2012, 116(19), 10541-10547.  doi: 10.1021/jp303100a

    52. [52]

      Liu, W.; Wang, Y. L; Han, X.; Lu, P.; Zhu, L.; Sun, C. W.; Qian, J.; He, S. L. Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography. Nanoscale, 2018, 10, 10025–10032.  doi: 10.1039/c8nr00066b

    53. [53]

      Wang, Y.; Hu, R.; Xi, W.; Cai, F.; Wang, S.; Zhu, Z.; Bai, R.; Qian, J. Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging. Biomed. Opt. Express 2015, 6(10), 3783-3794.  doi: 10.1364/BOE.6.003783

    54. [54]

      Alifu, N.; Yan, L. L.; Zhang, H. Q.; Zebibula, A.; Zhu, Z. G.; Xi, W.; Roe, A. W.; Xu, B.; Tian, W. J.; Qian, J. Organic dye doped nanoparticles with NIR emission and biocompatibility for ultra-deep in vivo two-photon microscopy under 1040 nm femtosecond excitation. Dyes Pigments 2017, 143, 76-85.  doi: 10.1016/j.dyepig.2017.04.017

    55. [55]

      Han, X.; Bai, Q.; Yao, L.; Liu, H. C.; Gao, Y.; Li, J. Y.; Liu, L. Q.; Liu, Y. L.; Li, X. X.; Lu, P.; Yang, B. Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light-emitting diode. Adv. Funct. Mater. 2015, 25, 7521-7529.  doi: 10.1002/adfm.v25.48

    56. [56]

      Zhu, Z. F.; Qian, J.; Zhao, X. Y.; Qin, W.; Hu, R. R.; Zhang, H. Q.; Li, D. Y.; Xu, Z. P.; Tang, B. Z.; He, S. L. Stable and size-tunable aggregation-induced emission nanoparticles encapsulated with nanographene oxide and applications in three-photon fluorescence bioimaging. ACS Nano 2016, 10, 588-597.  doi: 10.1021/acsnano.5b05606

    57. [57]

      Lakowicz, J. R. in Principles of fluorescence spectroscopy, Springer, Berlin, 3rd ed., 2006.

    58. [58]

      Polavarapu, L.; Manna, M.; Xu, Q. H. Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 2011, 3, 429-434.  doi: 10.1039/C0NR00458H

  • 加载中
    1. [1]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    2. [2]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    3. [3]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    4. [4]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    5. [5]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    6. [6]

      Zekun GaoXiuli ZhengWeimin LiuJie ShaShuaishuai BianHaohui RenJiasheng WuWenjun ZhangChun-Sing LeePengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874

    7. [7]

      Jiawei Li Cheng Chen Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513

    8. [8]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    9. [9]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    10. [10]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    11. [11]

      Wenbin ZhouYafei GaoXinyu FengYanqing ZhangCong YangLanxi HeFenghe ZhangXiaoguang LiQing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    14. [14]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    15. [15]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    16. [16]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

    19. [19]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    20. [20]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

Metrics
  • PDF Downloads(0)
  • Abstract views(728)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return