-
[1]
Yan, L. L.; Zhang, Y.; Ji, G.; Ma, L.; Chen, J. L.; Xu, B.; Tian, W. J. Multifunctional polymer nanoparticles, ultra bright near-infrared fluorescence and strong magnetization and their biological applications. RSC Adv. 2016, 6, 65426-65433.
doi: 10.1039/C6RA07520G
-
[2]
Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Efficient near-infrared AIE nanoparticles for cell imaging. Acta Chimica Sinica (in Chinese) 2016, 74, 917-922.
doi: 10.6023/A16080430
-
[3]
Zhang, F. L.; Di, Y. Z.; Li, Y.; Qi, Q. K.; Qian, J. Y.; Fu, X. Q.; Xu, B.; Tian, W. J. Highly efficient far red/near-infrared fluorophores with aggregation-induced emission for bioimaging. Dyes Pigments 2017, 142, 491-498.
doi: 10.1016/j.dyepig.2017.04.004
-
[4]
Kobat, D.; Horton, N. G.; Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 2011, 16(10), 106014.
doi: 10.1117/1.3646209
-
[5]
Qian, J.; Wang, D.; Cai, F. H.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33(19), 4851-4860.
doi: 10.1016/j.biomaterials.2012.02.053
-
[6]
Lakowicz, J. R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 2006, 1(1), 5-33.
doi: 10.1007/s11468-005-9002-3
-
[7]
Hinds, S.; Myrskog, S.; Levina, L.; Koleilat, G.; Yang, J.; Kelley, S. O.; Sargent, E. H. NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J. Am. Chem. Soc. 2007, 129(23), 7218-7219.
doi: 10.1021/ja070525s
-
[8]
Yong K T, Roy I, Ding H, Bergey, E. J.; Prasad, P. N. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small 2009, 5(17), 1997-2004.
doi: 10.1002/smll.v5:17
-
[9]
Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe) ZnS core-shell quantum dots, synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101(46), 9463-9475.
doi: 10.1021/jp971091y
-
[10]
Shi, L. J.; Zhu, C. N.; He, H.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W.; Tian, Z. Q. Near-infrared Ag2Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Adv. 2016, 6(44), 38183-38186.
doi: 10.1039/C6RA04987G
-
[11]
Wu, C. X.; Zhang, Y. J.; Li, Z.; Li, C. Y.; Wang, Q. B. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 2016, 8, 12531-12539.
doi: 10.1039/C6NR00060F
-
[12]
Han, H. J.; Wang, H. B.; Chen, Y. J.; Li, Z. H.; Wang, Y.; Jin, Q.; Ji, J. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. Nanoscale 2016, 8, 283-291.
doi: 10.1039/C5NR06734K
-
[13]
Luo, S. L.; Zhang, E. L.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127-7138.
doi: 10.1016/j.biomaterials.2011.06.024
-
[14]
Gao, X. H.; Yang, L. L.; Petros, J. A.; Marshal, F. F.; Simons, J. W.; Nie, S. M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63-72.
doi: 10.1016/j.copbio.2004.11.003
-
[15]
Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70.
doi: 10.1016/j.cbpa.2009.10.022
-
[16]
Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339-1386.
doi: 10.1021/cr0501339
-
[17]
Brasseur, N.; Nguyen, T. L.; Langlois, R.; Ouellet, R.; Marengo, S.; Houde, D.; Lier van, J. E. Synthesis and photodynamic activities of silicon 2,3-naphthalocyanine derivatives. J. Med. Chem. 1994, 37, 415-420.
doi: 10.1021/jm00029a014
-
[18]
Birks, J. B. in Photophysics of aromatic molecules, Wiley, London, UK, 1970.
-
[19]
Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P.; Liu, Y.; Zhu, D. B. Efficient blue emission from siloles. J. Mater. Chem. 2001, 11, 2974-2978.
doi: 10.1039/b102221k
-
[20]
Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001. 1740-1741.
-
[21]
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission, phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-4353.
-
[22]
Mei, J.; Hong, Y. N.; Lam, J. W. Y.; Qin, A. J.; Tang, Y. H.; Tang, B. Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429−5479.
doi: 10.1002/adma.201401356
-
[23]
Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441−2453.
doi: 10.1021/ar3003464
-
[24]
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361−5388.
doi: 10.1039/c1cs15113d
-
[25]
Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar. Chem. Rev. 2015, 115, 11718−11940.
doi: 10.1021/acs.chemrev.5b00263
-
[26]
Zhang, X. Y.; Wang, K.; Liu, M. Y.; Zhang, X. Q.; Tao, L.; Chen, Y. W.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: Recent advances and perspectives. Nanoscale 2015, 7, 11486-11508.
doi: 10.1039/C5NR01444A
-
[27]
Yan, L. L.; Zhang, Y.; Xu, B.; Tian, W. J. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8(5), 2471-2487.
doi: 10.1039/C5NR05051K
-
[28]
Zhang, Y.; Chen, Y. J.; Li, X.; Zhang, J. B.; Chen, J. L.; Xu, B.; Fu, X. Q.; Tian, W. J. Folic acid-functionalized AIE Pdots based on amphiphilic PCL-b-PEG for targeted cell imaging. Polym. Chem. 2014, 5, 3824-3830.
doi: 10.1039/C4PY00075G
-
[29]
Zhang, X. Q.; Zhang, X. Y.; Wang, S. Q.; Liu, M. Y.; Tao, L.; Wei, Y. Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale 2013, 5, 147-150.
doi: 10.1039/C2NR32698A
-
[30]
Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771-779.
doi: 10.1002/adfm.201102191
-
[31]
Geng, J. L.; Li, K.; Ding, D.; Zhang, X. H.; Qin, W.; Liu, J. Z.; Tang, B. Z.; Liu, B. Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. Small 2012, 8, 3655-3663.
doi: 10.1002/smll.v8.23
-
[32]
Geng, J. L.; Li, K.; Pu, K. Y.; Ding, D.; Liu, B. Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 2013, 9, 2012-2019.
doi: 10.1002/smll.v9.11
-
[33]
Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J. L.; Liu, R. R.; Liu, J. Z.; Zhang, X. H.; Liu, H. W.; Liu, B. TangPhotostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci. Rep. 2013, 3, 1150.
doi: 10.1038/srep01150
-
[34]
Wang, Z. L.; Yan, L. L.; Zhang, L.; Chen, Y. J.; Li, H.; Zhang, J. B.; Zhang, Y.; Li, X.; Xu, B.; Fu, X. Q.; Sun, Z. C.; Tian, W. J. Ultra bright red AIE dots for cytoplasm and nuclear imaging. Polym. Chem. 2014, 5, 7013-7020.
doi: 10.1039/C4PY00764F
-
[35]
Zhang, Y.; Chang, K. W.; Xu, B.; Chen, J. L.; Yan, L. L.; Ma, S. Q.; Wu, C. F.; Tian, W. J. Highly efficient near-infrared organic dots based on novel AEE fluorogen for specific cancer cell imaging. RSC Adv. 2015, 5, 36837-36844.
doi: 10.1039/C5RA04669F
-
[36]
Wang, L.; Tan, W. H. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano let. 2006, 6(1), 84-88.
doi: 10.1021/nl052105b
-
[37]
Zhang, J.; Lakowicz, J. R. A model for DNA detection by metal-enhanced fluorescence from immobilized silver nanoparticles on solid substrate. J. Phys. Chem. B 2006, 110(5), 2387-2392.
doi: 10.1021/jp055370u
-
[38]
Jin, Y. H.; Ye, F. M.; Zeigler, M.; Wu, C. F.; Chiu, D. T. Near-infrared fluorescent dye-doped semiconducting polymer dots. ACS nano 2011, 5(2), 1468-1475.
doi: 10.1021/nn103304m
-
[39]
Chung, C. Y. S.; Yam, V. W. W. Selective label-free detection of G-quadruplex structure of human telomere by emission spectral changes in visible-and-NIR region under physiological condition through the FRET of a two-component PPE-SO3--Pt(II) complex ensemble with Pt center dot center dot center dot Pt, electrostatic and pi-pi interactions. Chem. Sci. 2013, 4(1), 377-387.
doi: 10.1039/C2SC20897K
-
[40]
Zhang, X. J.; Yu, J. B.; Rong, Y. ; Ye, F. M.; Chiu, D. T.; Uvdal, K. High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy. Chem. Sci. 2013, 4(5), 2143-2151.
doi: 10.1039/c3sc50222h
-
[41]
Wagh, A.; Qian, S. Y.; Law, B. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging. Bioconjugate chem. 2012, 23(5), 981-992.
doi: 10.1021/bc200637h
-
[42]
Geng, J. L.; Zhu, Z. S.; Qin, W.; Ma, L.; Hu, Y.; Gurzadyan, G. G.; Tang, B. Z.; Liu, B. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging. Nanoscale 2014, 6, 939-945.
doi: 10.1039/C3NR04243J
-
[43]
Xie, Z. Q.; Yang, B.; Xie, W. J.; Liu, L. L.; Shen, F. Z.; Wang, H. A.; Yang, X. Y.; Wang, Z. M.; Li, Y. P.; Hanif, M.; Yang, G. D.; Ye, L.; Ma, Y. G. A class of nonplanar conjugated compounds with aggregation-induced emission, structural and optical properties of 2,5-diphenyl-1,4-distyrylbenzene derivatives with all cis double bonds. J. Phys. Chem. B 2006, 110(42), 20993-21000.
doi: 10.1021/jp064069q
-
[44]
Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H.; Wu, J. Z.; Yuan, J.; Zhang, B.; Tao, Z. M.; Fukunaga, C.; Dai, H. J. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 2014, 5, 4206.
doi: 10.1038/ncomms5206
-
[45]
Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3(10), 793-795.
doi: 10.1038/nmeth929
-
[46]
Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313(5793), 1642-1645.
doi: 10.1126/science.1127344
-
[47]
Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2001, 2(11), 764-774.
doi: 10.1034/j.1600-0854.2001.21104.x
-
[48]
Chen, B.; Feng, G. X.; He, B. R.; Goh, C.; Xu, S. D.; Ramos-Ortiz, G.; Aparicio-Ixta, L.; Zhou, J.; Ng, L. G.; Zhao, Z. J.; Liu, B.; Tang, B. Z. Silole-based red fluorescent organic dots for bright two-photon fluorescence in vitro cell and in vivo blood vessel imaging. Small 2016, 12, 782-792.
doi: 10.1002/smll.v12.6
-
[49]
Lou, X. D.; Zhao, Z. J.; Tang, B. Z. Organic dots based on AIEgens for Two-photon fluorescence bioimaging. Small 2016, 12, 6430-6450.
doi: 10.1002/smll.v12.47
-
[50]
Zhen, S. J.; Wang, S. W.; Li, S. W.; Luo, W. W.; Gao, M.; Ng, L. G.; Goh, C. C.; Qin, A. J.; Zhao, Z. J.; Liu, B.; Tang, B. Z. Efficient red/near-infrared fluorophores based on Benzo[1,2-b:4,5-b']dithiophene 1,1, 5,5-tetraoxide for targeted photodynamic therapy and in vivo two-photon fluorescence bioimaging. Adv. Funct. Mater. 2018, 28, 1706945.
doi: 10.1002/adfm.v28.13
-
[51]
Shen, X. Y.; Yuan, W. Z.; Liu, Y.; Zhao, Q. L.; Lu, P.; Ma, Y. G.; Williams, I. D.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. Fumaronitrile-based fluorogen, red to near-infrared fluorescence, aggregation-induced emission, solvatochromism, and twisted intramolecular charge transfer. J. Phys. Chem. C 2012, 116(19), 10541-10547.
doi: 10.1021/jp303100a
-
[52]
Liu, W.; Wang, Y. L; Han, X.; Lu, P.; Zhu, L.; Sun, C. W.; Qian, J.; He, S. L. Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for in vivo brain angiography. Nanoscale, 2018, 10, 10025–10032.
doi: 10.1039/c8nr00066b
-
[53]
Wang, Y.; Hu, R.; Xi, W.; Cai, F.; Wang, S.; Zhu, Z.; Bai, R.; Qian, J. Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging. Biomed. Opt. Express 2015, 6(10), 3783-3794.
doi: 10.1364/BOE.6.003783
-
[54]
Alifu, N.; Yan, L. L.; Zhang, H. Q.; Zebibula, A.; Zhu, Z. G.; Xi, W.; Roe, A. W.; Xu, B.; Tian, W. J.; Qian, J. Organic dye doped nanoparticles with NIR emission and biocompatibility for ultra-deep in vivo two-photon microscopy under 1040 nm femtosecond excitation. Dyes Pigments 2017, 143, 76-85.
doi: 10.1016/j.dyepig.2017.04.017
-
[55]
Han, X.; Bai, Q.; Yao, L.; Liu, H. C.; Gao, Y.; Li, J. Y.; Liu, L. Q.; Liu, Y. L.; Li, X. X.; Lu, P.; Yang, B. Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light-emitting diode. Adv. Funct. Mater. 2015, 25, 7521-7529.
doi: 10.1002/adfm.v25.48
-
[56]
Zhu, Z. F.; Qian, J.; Zhao, X. Y.; Qin, W.; Hu, R. R.; Zhang, H. Q.; Li, D. Y.; Xu, Z. P.; Tang, B. Z.; He, S. L. Stable and size-tunable aggregation-induced emission nanoparticles encapsulated with nanographene oxide and applications in three-photon fluorescence bioimaging. ACS Nano 2016, 10, 588-597.
doi: 10.1021/acsnano.5b05606
-
[57]
Lakowicz, J. R. in Principles of fluorescence spectroscopy, Springer, Berlin, 3rd ed., 2006.
-
[58]
Polavarapu, L.; Manna, M.; Xu, Q. H. Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 2011, 3, 429-434.
doi: 10.1039/C0NR00458H