Citation: Hui Chen, Min-Hui Li. Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 352-371. doi: 10.1007/s10118-019-2204-5 shu

Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission

  • Corresponding author: Min-Hui Li, min-hui.li@chimieparistech.psl.eu
  • Received Date: 1 November 2018
    Revised Date: 28 November 2018
    Accepted Date: 3 December 2018
    Available Online: 21 January 2019

  • Fluorescent vesicles have recently attracted increasing attention because of their potential applications in bioimaging, diagnostics, and theranostics, for example, in vivo study of the delivery and the distribution of active substances. However, fluorescent vesicles containing conventional organic dyes often suffer from the problem of aggregation-caused quenching (ACQ) of fluorescence. Fluorescent vesicles working with aggregation-induced emission (AIE) offer an extraordinary tool to tackle the ACQ issue, showing advantages such as high emission efficiency, superior photophysical stability, low background interference, and high sensitivity. AIE fluorescent vesicles represent a new type of fluorescent and functional nanomaterials. In this review, we summarize the recent advances in the development of AIE fluorescent vesicles. The review is organized according to the chemical structures and architectures of the amphiphilic molecules that constitute the AIE vesicles, i.e., small-molecule amphiphiles, amphiphilic polymers, and amphiphilic supramolecules and supramacromolecules. The studies on the applications of these AIE vesicles as stimuli-responsive vesicles, fluorescence-guided drug release carriers, cell imaging tools, and fluorescent materials based on fluorescence resonance energy transfer (FRET) are also discussed.
  • 加载中
    1. [1]

      Hocine, S.; Li, M. H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter 2013, 9, 5839-5861.  doi: 10.1039/c3sm50428j

    2. [2]

      Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid. Comm. 2009, 30, 267-77.  doi: 10.1002/marc.v30:4/5

    3. [3]

      Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789-801.  doi: 10.1016/j.drudis.2016.01.004

    4. [4]

      Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D. A.; Levine, D. H.; Kim, A. J.; Bates, F. S.; Davis, K. P.; Lodge, T. P.; Klein, M. L.; DeVane, R. H.; Aqad, E.; Rosen, B. M.; Argintaru, A. O.; Sienkowska, M. J.; Rissanen, K.; Nummelin, S.; Ropponen, J. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 2010, 328, 1009-1014.  doi: 10.1126/science.1185547

    5. [5]

      Lombardo, D.; Kiselev, M. A.; Magazù, S.; Calandra, P. Amphiphiles self-Assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Cond. Matter Phys. 2015, 2015, 1-22.

    6. [6]

      Discher, D. E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323-341.  doi: 10.1146/annurev.bioeng.8.061505.095838

    7. [7]

      Ahmed, F.; Pakunlu, R. I.; Brannan, A.; Bates, F.; Minko, T.; Discher, D. E. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control Release. 2006, 116, 150-158.  doi: 10.1016/j.jconrel.2006.07.012

    8. [8]

      Eloy, J. O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J. P. A.; Lee, R. J.; Marchetti, J. M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf. B 2014, 123, 345-363.  doi: 10.1016/j.colsurfb.2014.09.029

    9. [9]

      Antonietti, M.; Förster, S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater. 2003, 15, 1323-1333.  doi: 10.1002/(ISSN)1521-4095

    10. [10]

      Broz, P.; Benito, S. M.; Saw, C.; Burger, P.; Heider, H.; Pfisterer, M.; Marsch, S.; Meier, W.; Hunziker, P. Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J. Control Release. 2005, 102, 475-488.  doi: 10.1016/j.jconrel.2004.10.014

    11. [11]

      Lin, Y. S.; Lee, M.-Y.; Yang, C. H.; Huang, K. S. Active targeted drug delivery for microbes using nano-carriers. Curr. Top. Med. Chem. 2015, 15, 1525-1531.  doi: 10.2174/1568026615666150414123157

    12. [12]

      De Oliveira, H.; Thevenot, J.; Lecommandoux, S. Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 525-546.  doi: 10.1002/wnan.1183

    13. [13]

      Deng, Y.; Ling, J.; Li, M. H. Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. Nanoscale 2018, 10, 6781-6800.  doi: 10.1039/C8NR00923F

    14. [14]

      Li, M. H.; Keller, P. Stimuli-responsive polymer vesicles. Soft Matter 2009, 5, 927-937.  doi: 10.1039/b815725a

    15. [15]

      Mabrouk, E.; Cuvelier, D.; Brochard-Wyart, F.; Nassoy, P.; Li, M. H. Bursting of sensitive polymersomes induced by curling. Proc. Natl. Acad. Sci. U.S.A 2009, 106, 7294-7298.  doi: 10.1073/pnas.0813157106

    16. [16]

      Meng, F. H.; Zhong, Z. Y.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009, 10, 197-209.  doi: 10.1021/bm801127d

    17. [17]

      Du, J.; O'Reilly, R. K. Advances and challenges in smart and functional polymer vesicles. Soft Matter 2009, 3544-3561.

    18. [18]

      Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M. V.; Perez, L. R.; Battaglia, G. Block copolymer nanostructures. Nano Today 2008, 3, 38-46.  doi: 10.1016/S1748-0132(08)70043-4

    19. [19]

      Discher, B. M.; Bermudez, H.; Hammer, D. A.; Discher, D. E.; Won, Y. Y.; Bates, F. S. Cross-linked polymersome membranes:  Vesicles with broadly adjustable properties. J. Phys. Chem. B 2002, 106, 2848-2854.  doi: 10.1021/jp011958z

    20. [20]

      Kikuchi, K. Design, synthesis and biological application of chemical probes for bio-imaging. Chem. Soc. Rev. 2010, 39, 2048-2053.  doi: 10.1039/b819316a

    21. [21]

      Haugland, R. P. in The molecular probes handbook: A guide to fluorescent probes and labeling technologies. Life Technologies: Carlsbad, CA, 2010.

    22. [22]

      Liang, J.; Tang, B. Z.; Liu, B. Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 2015, 44, 2798-2811.  doi: 10.1039/C4CS00444B

    23. [23]

      Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. J. Mater. Chem. B 2014, 2, 4398-4414.

    24. [24]

      Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471-2487.  doi: 10.1039/C5NR05051K

    25. [25]

      Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570-6597.  doi: 10.1039/C4CS00014E

    26. [26]

      Chen, M.; Yin, M. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 2014, 39, 365-395.  doi: 10.1016/j.progpolymsci.2013.11.001

    27. [27]

      Ghoroghchian, P. P.; Frail, P. R.; Susumu, K.; Blessington, D.; Brannan, A. K.; Bates, F. S.; Chance, B.; Hammer, D. A.; Therien, M. J. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc. Natl. Acad. Sci. 2005, 102, 2922-2927.  doi: 10.1073/pnas.0409394102

    28. [28]

      Kamat, N. P.; Liao, Z.; Moses, L. E.; Rawson, J.; Therien, M. J.; Dmochowski, I. J.; Hammer, D. A. Sensing membrane stress with near IR-emissive porphyrins. Proc. Natl. Acad. Sci. 2011, 108, 13984-13989.  doi: 10.1073/pnas.1102125108

    29. [29]

      Duncan, T. V.; Ghoroghchian, P. P.; Rubtsov, I. V.; Hammer, D. A.; Therien, M. J. Ultrafast excited-state dynamics of nanoscale near-infrared emissive polymersomes. J. Am. Chem. Soc. 2008, 130, 9773-9784.  doi: 10.1021/ja711497w

    30. [30]

      Christian, N. A.; Benencia, F.; Milone, M. C.; Li, G.; Frail, P. R.; Therien, M. J.; Coukos, G.; Hammer, D. A. In vivo dendritic cell tracking using fluorescence lifetime imaging and near-infrared-emissive polymersomes. Mol. Imaging Biol. 2009, 11, 167-177.  doi: 10.1007/s11307-008-0184-x

    31. [31]

      Birks, J. B. in Photophysics of aromatic molecules. Wiley, New York, 1970.

    32. [32]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 0, 1740-1741.

    33. [33]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.

    34. [34]

      Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479.  doi: 10.1002/adma.201401356

    35. [35]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.  doi: 10.1021/ar3003464

    36. [36]

      Huang, J.; Yu, Y.; Wang, L.; Wang, X.; Gu, Z.; Zhang, S. Tetraphenylethylene-induced cross-linked vesicles with tunable luminescence and controllable stability. ACS Appl. Mater. Interfaces 2017, 9, 29030-29037.  doi: 10.1021/acsami.7b06954

    37. [37]

      Nonappa; Maitra, U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org. Biomol. Chem. 2008, 6, 657-669.  doi: 10.1039/b714475j

    38. [38]

      Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. AIE-induced fluorescent vesicles containing amphiphilic binding pockets and the FRET triggered by host-guest chemistry. Chem. Commun. 2015, 51, 10210-10213.  doi: 10.1039/C5CC02377G

    39. [39]

      Dan, N., in Nanostructures for drug delivery, core-shell drug carriers: Liposomes, polymersomes, and niosomes. Elsevier, 2017, pp 63−105.

    40. [40]

      Wang, X.; Yang, Y.; Zhuang, Y.; Gao, P.; Yang, F.; Shen, H.; Guo, H.; Wu, D. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery. Biomacromolecules 2016, 17, 2920-2929.  doi: 10.1021/acs.biomac.6b00744

    41. [41]

      Wang, X.; Yang, Y.; Zuo, Y.; Yang, F.; Shen, H.; Wu, D. Facile creation of FRET systems from a pH-responsive AIE fluorescent vesicle. Chem. Commun. 2016, 52, 5320-5323.  doi: 10.1039/C6CC01706A

    42. [42]

      Wang, X.; Yang, Y.; Yang, F.; Shen, H.; Wu, D. pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging. Polymer 2017, 118, 75-84.  doi: 10.1016/j.polymer.2017.04.064

    43. [43]

      Li, G.; Du, F.; Wang, H.; Bai, R. Synthesis and self-assembly of carbazole-based amphiphilic triblock copolymers with aggregation-induced emission enhancement. React. Funct. Polym. 2014, 75, 75-80..  doi: 10.1016/j.reactfunctpolym.2013.12.007

    44. [44]

      Ma, C. P.; Chi, Z. G.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. AIE vesicles consisting of tetraphenylethylene-based amphiphilic diblock copolymer with a poly(N-isopropylacrylamide) sequence. J. Control Release. 2013, 172, e95.

    45. [45]

      Zhao, Y.; Wu, Y.; Yan, G.; Zhang, K. Aggregation-induced emission block copolymers based on ring-opening metathesis polymerization. RSC Adv. 2014, 4, 51194-51200.  doi: 10.1039/C4RA08191A

    46. [46]

      Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Aggregation-induced emission polymer nanoparticles with pH-responsive fluorescence. Polym. Chem. 2016, 7, 5386-5395.  doi: 10.1039/C6PY01009A

    47. [47]

      Zhang, N.; Chen, H.; Fan, Y.; Zhou, L.; Trepout, S.; Guo, J.; Li, M. H. Fluorescent polymersomes with aggregation-induced emission. ACS Nano 2018, 12, 4025-4035.  doi: 10.1021/acsnano.8b01755

    48. [48]

      Liu, Q.; Xia, Q.; Wang, S.; Li, B. S.; Tang, B. Z. In situ visualizable self-assembly, aggregation-induced emission and circularly polarized luminescence of tetraphenylethene and alanine-based chiral polytriazole. J. Mater. Chem. C 2018, 6, 4807-4816.  doi: 10.1039/C8TC00838H

    49. [49]

      Wang, C.; Wang, Z. Q.; Zhang, X. Amphiphilic building blocks for self-assembly: From amphiphiles to supra-amphiphiles. Acc. Chem. Res. 2012, 45, 608-618.  doi: 10.1021/ar200226d

    50. [50]

      Zhang, X.; Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011, 40, 94-101.  doi: 10.1039/B919678C

    51. [51]

      Chen, L. J.; Ren, Y.-Y.; Wu, N. W.; Sun, B.; Ma, J. Q.; Zhang, L.; Tan, H.; Liu, M.; Li, X.; Yang, H. B. Hierarchical self-assembly of discrete organoplatinum(II) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection. J. Am. Chem. Soc. 2015, 137, 11725-11735.  doi: 10.1021/jacs.5b06565

    52. [52]

      Zheng, W.; Yang, G.; Jiang, S.-T.; Shao, N.; Yin, G.-Q.; Xu, L.; Li, X.; Chen, G.; Yang, H.-B. A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(II) metallacycle and its self-assembly behaviour. Mater. Chem. Front. 2017, 1, 1823-1828.  doi: 10.1039/C7QM00107J

    53. [53]

      Zhang, C. W.; Ou, B.; Jiang, S. T.; Yin, G. Q.; Chen, L. J.; Xu, L.; Li, X.; Yang, H. B. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9, 2021-2030.  doi: 10.1039/C8PY00226F

    54. [54]

      Chi, X.; Zhang, H.; Vargas-Zuniga, G. I.; Peters, G. M.; Sessler, J. L. A Dual-responsive bola-type supra-amphiphile constructed from a water-soluble calix[4] pyrrole and a tetraphenylethene-containing pyridine bis-N-oxide. J. Am. Chem. Soc. 2016, 138, 5829-5832.  doi: 10.1021/jacs.6b03159

    55. [55]

      Li, J.; Shi, K.; Drechsler, M.; Tang, B. Z.; Huang, J.; Yan, Y. A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission amphiphile: Insight into the role of electrical charge in cancer cell division. Chem. Commun. 2016, 52, 12466-12469.  doi: 10.1039/C6CC06432A

    56. [56]

      Li, J.; Liu, K.; Chen, H.; Li, R.; Drechsler, M.; Bai, F.; Huang, J.; Tang, B. Z.; Yan, Y. Functional built-in template directed siliceous fluorescent supramolecular vesicles as diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 21706-21714.  doi: 10.1021/acsami.7b06306

    57. [57]

      Li, J.; Liu, K.; Han, Y.; Tang, B. Z.; Huang, J.; Yan, Y. Fabrication of propeller-shaped supra-amphiphile for construction of enzyme-responsive fluorescent vesicles. ACS Appl. Mater. Interfaces 2016, 8, 27987-27995.  doi: 10.1021/acsami.6b08620

    58. [58]

      Wei, Y.; Wang, L.; Huang, J.; Zhao, J.; Yan, Y. Multifunctional metallo-organic vesicles displaying aggregation-Induced emission: two-photon cell-Imaging, drug delivery, and specific detection of zinc ion. ACS Appl. Nano Mater. 2018, 1, 1819-1827.  doi: 10.1021/acsanm.8b00226

    59. [59]

      Kong, Q.; Zhuang, W.; Li, G.; Jiang, Q.; Wang, Y. Cation-anion interaction-directed formation of functional vesicles and their biological application for nucleus-specific imaging. New J. Chem. 2018, 42, 9187-9192.  doi: 10.1039/C8NJ01503A

    60. [60]

      He, L.; Liu, X.; Liang, J.; Cong, Y.; Weng, Z.; Bu, W. Fluorescence responsive conjugated poly(tetraphenylethene) and its morphological transition from micelle to vesicle. Chem. Commun. 2015, 51, 7148-7151.  doi: 10.1039/C5CC00934K

    61. [61]

      Ji, X. F.; Li, Y.; Wang, H.; Zhao, R.; Tangb, G. P.; Huang, F. H. Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polym. Chem. 2015, 6, 5021-5025.  doi: 10.1039/C5PY00801H

    62. [62]

      Shen, J.; Pang, J.; Xu, G.; Xin, X.; Yang, Y.; Luan, X.; Yuan, S. Smart stimuli-responsive fluorescent vesicular sensor based on inclusion complexation of cyclodextrins with Tyloxapol. RSC Adv. 2016, 6, 11683-11690.  doi: 10.1039/C5RA26464B

    63. [63]

      Shen, J.; Wang, Z.; Sun, D.; Xia, C.; Yuan, S.; Sun, P.; Xin, X. pH-responsive nanovesicles with enhanced emission co-assembled by Ag(I) nanoclusters and polyethyleneimine as a superior sensor for Al3+. ACS Appl. Mater. Interfaces 2018, 10, 3955-3963.  doi: 10.1021/acsami.7b16316

    64. [64]

      Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Würthner, F. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nat. Chem. 2009, 1, 623-629.  doi: 10.1038/nchem.368

    65. [65]

      Sapsford, K. E.; Berti, L.; Medintz, I. L. Fluorescence resonance energy transfer - Concepts, applications and advances. Minerva. Biotecnol. 2004, 16, 247-273.

  • 加载中
    1. [1]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    4. [4]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    7. [7]

      Haibo WanZhengzhong LvJicai JiangXuefeng ChengQingfeng XuHaibin ShiJianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023

    8. [8]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    9. [9]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    10. [10]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    11. [11]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    12. [12]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    13. [13]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    14. [14]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    15. [15]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    16. [16]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    19. [19]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    20. [20]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

Metrics
  • PDF Downloads(0)
  • Abstract views(798)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return