Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission
- Corresponding author: Min-Hui Li, min-hui.li@chimieparistech.psl.eu
Citation:
Hui Chen, Min-Hui Li. Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission[J]. Chinese Journal of Polymer Science,
;2019, 37(4): 352-371.
doi:
10.1007/s10118-019-2204-5
Hocine, S.; Li, M. H. Thermoresponsive self-assembled polymer colloids in water. Soft Matter 2013, 9, 5839-5861.
doi: 10.1039/c3sm50428j
Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid. Comm. 2009, 30, 267-77.
doi: 10.1002/marc.v30:4/5
Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789-801.
doi: 10.1016/j.drudis.2016.01.004
Percec, V.; Wilson, D. A.; Leowanawat, P.; Wilson, C. J.; Hughes, A. D.; Kaucher, M. S.; Hammer, D. A.; Levine, D. H.; Kim, A. J.; Bates, F. S.; Davis, K. P.; Lodge, T. P.; Klein, M. L.; DeVane, R. H.; Aqad, E.; Rosen, B. M.; Argintaru, A. O.; Sienkowska, M. J.; Rissanen, K.; Nummelin, S.; Ropponen, J. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 2010, 328, 1009-1014.
doi: 10.1126/science.1185547
Lombardo, D.; Kiselev, M. A.; Magazù, S.; Calandra, P. Amphiphiles self-Assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Cond. Matter Phys. 2015, 2015, 1-22.
Discher, D. E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323-341.
doi: 10.1146/annurev.bioeng.8.061505.095838
Ahmed, F.; Pakunlu, R. I.; Brannan, A.; Bates, F.; Minko, T.; Discher, D. E. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control Release. 2006, 116, 150-158.
doi: 10.1016/j.jconrel.2006.07.012
Eloy, J. O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J. P. A.; Lee, R. J.; Marchetti, J. M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf. B 2014, 123, 345-363.
doi: 10.1016/j.colsurfb.2014.09.029
Antonietti, M.; Förster, S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater. 2003, 15, 1323-1333.
doi: 10.1002/(ISSN)1521-4095
Broz, P.; Benito, S. M.; Saw, C.; Burger, P.; Heider, H.; Pfisterer, M.; Marsch, S.; Meier, W.; Hunziker, P. Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J. Control Release. 2005, 102, 475-488.
doi: 10.1016/j.jconrel.2004.10.014
Lin, Y. S.; Lee, M.-Y.; Yang, C. H.; Huang, K. S. Active targeted drug delivery for microbes using nano-carriers. Curr. Top. Med. Chem. 2015, 15, 1525-1531.
doi: 10.2174/1568026615666150414123157
De Oliveira, H.; Thevenot, J.; Lecommandoux, S. Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 525-546.
doi: 10.1002/wnan.1183
Deng, Y.; Ling, J.; Li, M. H. Physical stimuli-responsive liposomes and polymersomes as drug delivery vehicles based on phase transitions in the membrane. Nanoscale 2018, 10, 6781-6800.
doi: 10.1039/C8NR00923F
Li, M. H.; Keller, P. Stimuli-responsive polymer vesicles. Soft Matter 2009, 5, 927-937.
doi: 10.1039/b815725a
Mabrouk, E.; Cuvelier, D.; Brochard-Wyart, F.; Nassoy, P.; Li, M. H. Bursting of sensitive polymersomes induced by curling. Proc. Natl. Acad. Sci. U.S.A 2009, 106, 7294-7298.
doi: 10.1073/pnas.0813157106
Meng, F. H.; Zhong, Z. Y.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009, 10, 197-209.
doi: 10.1021/bm801127d
Du, J.; O'Reilly, R. K. Advances and challenges in smart and functional polymer vesicles. Soft Matter 2009, 3544-3561.
Smart, T.; Lomas, H.; Massignani, M.; Flores-Merino, M. V.; Perez, L. R.; Battaglia, G. Block copolymer nanostructures. Nano Today 2008, 3, 38-46.
doi: 10.1016/S1748-0132(08)70043-4
Discher, B. M.; Bermudez, H.; Hammer, D. A.; Discher, D. E.; Won, Y. Y.; Bates, F. S. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. J. Phys. Chem. B 2002, 106, 2848-2854.
doi: 10.1021/jp011958z
Kikuchi, K. Design, synthesis and biological application of chemical probes for bio-imaging. Chem. Soc. Rev. 2010, 39, 2048-2053.
doi: 10.1039/b819316a
Haugland, R. P. in The molecular probes handbook: A guide to fluorescent probes and labeling technologies. Life Technologies: Carlsbad, CA, 2010.
Liang, J.; Tang, B. Z.; Liu, B. Specific light-up bioprobes based on AIEgen conjugates. Chem. Soc. Rev. 2015, 44, 2798-2811.
doi: 10.1039/C4CS00444B
Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y. Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. J. Mater. Chem. B 2014, 2, 4398-4414.
Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471-2487.
doi: 10.1039/C5NR05051K
Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570-6597.
doi: 10.1039/C4CS00014E
Chen, M.; Yin, M. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 2014, 39, 365-395.
doi: 10.1016/j.progpolymsci.2013.11.001
Ghoroghchian, P. P.; Frail, P. R.; Susumu, K.; Blessington, D.; Brannan, A. K.; Bates, F. S.; Chance, B.; Hammer, D. A.; Therien, M. J. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imaging. Proc. Natl. Acad. Sci. 2005, 102, 2922-2927.
doi: 10.1073/pnas.0409394102
Kamat, N. P.; Liao, Z.; Moses, L. E.; Rawson, J.; Therien, M. J.; Dmochowski, I. J.; Hammer, D. A. Sensing membrane stress with near IR-emissive porphyrins. Proc. Natl. Acad. Sci. 2011, 108, 13984-13989.
doi: 10.1073/pnas.1102125108
Duncan, T. V.; Ghoroghchian, P. P.; Rubtsov, I. V.; Hammer, D. A.; Therien, M. J. Ultrafast excited-state dynamics of nanoscale near-infrared emissive polymersomes. J. Am. Chem. Soc. 2008, 130, 9773-9784.
doi: 10.1021/ja711497w
Christian, N. A.; Benencia, F.; Milone, M. C.; Li, G.; Frail, P. R.; Therien, M. J.; Coukos, G.; Hammer, D. A. In vivo dendritic cell tracking using fluorescence lifetime imaging and near-infrared-emissive polymersomes. Mol. Imaging Biol. 2009, 11, 167-177.
doi: 10.1007/s11307-008-0184-x
Birks, J. B. in Photophysics of aromatic molecules. Wiley, New York, 1970.
Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 0, 1740-1741.
Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-5479.
doi: 10.1002/adma.201401356
Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441-2453.
doi: 10.1021/ar3003464
Huang, J.; Yu, Y.; Wang, L.; Wang, X.; Gu, Z.; Zhang, S. Tetraphenylethylene-induced cross-linked vesicles with tunable luminescence and controllable stability. ACS Appl. Mater. Interfaces 2017, 9, 29030-29037.
doi: 10.1021/acsami.7b06954
Nonappa; Maitra, U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org. Biomol. Chem. 2008, 6, 657-669.
doi: 10.1039/b714475j
Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. AIE-induced fluorescent vesicles containing amphiphilic binding pockets and the FRET triggered by host-guest chemistry. Chem. Commun. 2015, 51, 10210-10213.
doi: 10.1039/C5CC02377G
Dan, N., in Nanostructures for drug delivery, core-shell drug carriers: Liposomes, polymersomes, and niosomes. Elsevier, 2017, pp 63−105.
Wang, X.; Yang, Y.; Zhuang, Y.; Gao, P.; Yang, F.; Shen, H.; Guo, H.; Wu, D. Fabrication of pH-responsive nanoparticles with an AIE feature for imaging intracellular drug delivery. Biomacromolecules 2016, 17, 2920-2929.
doi: 10.1021/acs.biomac.6b00744
Wang, X.; Yang, Y.; Zuo, Y.; Yang, F.; Shen, H.; Wu, D. Facile creation of FRET systems from a pH-responsive AIE fluorescent vesicle. Chem. Commun. 2016, 52, 5320-5323.
doi: 10.1039/C6CC01706A
Wang, X.; Yang, Y.; Yang, F.; Shen, H.; Wu, D. pH-triggered decomposition of polymeric fluorescent vesicles to induce growth of tetraphenylethylene nanoparticles for long-term live cell imaging. Polymer 2017, 118, 75-84.
doi: 10.1016/j.polymer.2017.04.064
Li, G.; Du, F.; Wang, H.; Bai, R. Synthesis and self-assembly of carbazole-based amphiphilic triblock copolymers with aggregation-induced emission enhancement. React. Funct. Polym. 2014, 75, 75-80..
doi: 10.1016/j.reactfunctpolym.2013.12.007
Ma, C. P.; Chi, Z. G.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. AIE vesicles consisting of tetraphenylethylene-based amphiphilic diblock copolymer with a poly(N-isopropylacrylamide) sequence. J. Control Release. 2013, 172, e95.
Zhao, Y.; Wu, Y.; Yan, G.; Zhang, K. Aggregation-induced emission block copolymers based on ring-opening metathesis polymerization. RSC Adv. 2014, 4, 51194-51200.
doi: 10.1039/C4RA08191A
Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Aggregation-induced emission polymer nanoparticles with pH-responsive fluorescence. Polym. Chem. 2016, 7, 5386-5395.
doi: 10.1039/C6PY01009A
Zhang, N.; Chen, H.; Fan, Y.; Zhou, L.; Trepout, S.; Guo, J.; Li, M. H. Fluorescent polymersomes with aggregation-induced emission. ACS Nano 2018, 12, 4025-4035.
doi: 10.1021/acsnano.8b01755
Liu, Q.; Xia, Q.; Wang, S.; Li, B. S.; Tang, B. Z. In situ visualizable self-assembly, aggregation-induced emission and circularly polarized luminescence of tetraphenylethene and alanine-based chiral polytriazole. J. Mater. Chem. C 2018, 6, 4807-4816.
doi: 10.1039/C8TC00838H
Wang, C.; Wang, Z. Q.; Zhang, X. Amphiphilic building blocks for self-assembly: From amphiphiles to supra-amphiphiles. Acc. Chem. Res. 2012, 45, 608-618.
doi: 10.1021/ar200226d
Zhang, X.; Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011, 40, 94-101.
doi: 10.1039/B919678C
Chen, L. J.; Ren, Y.-Y.; Wu, N. W.; Sun, B.; Ma, J. Q.; Zhang, L.; Tan, H.; Liu, M.; Li, X.; Yang, H. B. Hierarchical self-assembly of discrete organoplatinum(II) metallacycles with polysaccharide via electrostatic interactions and their application for heparin detection. J. Am. Chem. Soc. 2015, 137, 11725-11735.
doi: 10.1021/jacs.5b06565
Zheng, W.; Yang, G.; Jiang, S.-T.; Shao, N.; Yin, G.-Q.; Xu, L.; Li, X.; Chen, G.; Yang, H.-B. A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(II) metallacycle and its self-assembly behaviour. Mater. Chem. Front. 2017, 1, 1823-1828.
doi: 10.1039/C7QM00107J
Zhang, C. W.; Ou, B.; Jiang, S. T.; Yin, G. Q.; Chen, L. J.; Xu, L.; Li, X.; Yang, H. B. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym. Chem. 2018, 9, 2021-2030.
doi: 10.1039/C8PY00226F
Chi, X.; Zhang, H.; Vargas-Zuniga, G. I.; Peters, G. M.; Sessler, J. L. A Dual-responsive bola-type supra-amphiphile constructed from a water-soluble calix[4] pyrrole and a tetraphenylethene-containing pyridine bis-N-oxide. J. Am. Chem. Soc. 2016, 138, 5829-5832.
doi: 10.1021/jacs.6b03159
Li, J.; Shi, K.; Drechsler, M.; Tang, B. Z.; Huang, J.; Yan, Y. A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission amphiphile: Insight into the role of electrical charge in cancer cell division. Chem. Commun. 2016, 52, 12466-12469.
doi: 10.1039/C6CC06432A
Li, J.; Liu, K.; Chen, H.; Li, R.; Drechsler, M.; Bai, F.; Huang, J.; Tang, B. Z.; Yan, Y. Functional built-in template directed siliceous fluorescent supramolecular vesicles as diagnostics. ACS Appl. Mater. Interfaces 2017, 9, 21706-21714.
doi: 10.1021/acsami.7b06306
Li, J.; Liu, K.; Han, Y.; Tang, B. Z.; Huang, J.; Yan, Y. Fabrication of propeller-shaped supra-amphiphile for construction of enzyme-responsive fluorescent vesicles. ACS Appl. Mater. Interfaces 2016, 8, 27987-27995.
doi: 10.1021/acsami.6b08620
Wei, Y.; Wang, L.; Huang, J.; Zhao, J.; Yan, Y. Multifunctional metallo-organic vesicles displaying aggregation-Induced emission: two-photon cell-Imaging, drug delivery, and specific detection of zinc ion. ACS Appl. Nano Mater. 2018, 1, 1819-1827.
doi: 10.1021/acsanm.8b00226
Kong, Q.; Zhuang, W.; Li, G.; Jiang, Q.; Wang, Y. Cation-anion interaction-directed formation of functional vesicles and their biological application for nucleus-specific imaging. New J. Chem. 2018, 42, 9187-9192.
doi: 10.1039/C8NJ01503A
He, L.; Liu, X.; Liang, J.; Cong, Y.; Weng, Z.; Bu, W. Fluorescence responsive conjugated poly(tetraphenylethene) and its morphological transition from micelle to vesicle. Chem. Commun. 2015, 51, 7148-7151.
doi: 10.1039/C5CC00934K
Ji, X. F.; Li, Y.; Wang, H.; Zhao, R.; Tangb, G. P.; Huang, F. H. Facile construction of fluorescent polymeric aggregates with various morphologies by self-assembly of supramolecular amphiphilic graft copolymers. Polym. Chem. 2015, 6, 5021-5025.
doi: 10.1039/C5PY00801H
Shen, J.; Pang, J.; Xu, G.; Xin, X.; Yang, Y.; Luan, X.; Yuan, S. Smart stimuli-responsive fluorescent vesicular sensor based on inclusion complexation of cyclodextrins with Tyloxapol. RSC Adv. 2016, 6, 11683-11690.
doi: 10.1039/C5RA26464B
Shen, J.; Wang, Z.; Sun, D.; Xia, C.; Yuan, S.; Sun, P.; Xin, X. pH-responsive nanovesicles with enhanced emission co-assembled by Ag(I) nanoclusters and polyethyleneimine as a superior sensor for Al3+. ACS Appl. Mater. Interfaces 2018, 10, 3955-3963.
doi: 10.1021/acsami.7b16316
Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Würthner, F. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nat. Chem. 2009, 1, 623-629.
doi: 10.1038/nchem.368
Sapsford, K. E.; Berti, L.; Medintz, I. L. Fluorescence resonance energy transfer - Concepts, applications and advances. Minerva. Biotecnol. 2004, 16, 247-273.
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791
Chenlu Huang , Xinyu Yang , Qingyu Yu , Linhua Zhang , Dunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
Haibo Wan , Zhengzhong Lv , Jicai Jiang , Xuefeng Cheng , Qingfeng Xu , Haibin Shi , Jianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
Xingqun Pu , Rongrong Liu , Yuting Xie , Chenjing Yang , Jingyi Chen , Baoling Guo , Chun-Xia Zhao , Peng Zhao , Jian Ruan , Fangfu Ye , David A Weitz , Dong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Yunjie Dang , Yanru Feng , Xiao Chen , Chaoxing He , Shujie Wei , Dingyang Liu , Jinlong Qi , Huaxing Zhang , Shaokun Yang , Zhiyun Niu , Bai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Hongxia Yan , Weixu Feng , Junyan Yao , Wei Tian , Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452