Citation: Jia-Long Wu, Chi Zhang, Wei Qin, Da-Ping Quan, Ming-Liang Ge, Guo-Dong Liang. Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens[J]. Chinese Journal of Polymer Science, ;2019, 37(4): 394-400. doi: 10.1007/s10118-019-2201-8 shu

Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens

  • Thermoresponsive fluorescent polymers (TFPs) with unique temperature-dependent luminescent properties are of great importance for the development of new functional devices in recent years. Herein, we facilely synthesized an efficient blue-emissive polymer, abbreviated as PCB-TPE, using tetraphenylethene (TPE) as the main building block. PCB-TPE is thermally stable with a novel property of aggregation induced emission (AIE). The thermoresponsive property and mechanism of PCB-TPE were investigated. Its emission shows temperature-dependent features and reveals fine details in the thermal transitions from −10 °C to 60 °C. The polymer offers a platform for the development of efficient luminescent materials for further biological and optoelectronic applications.
  • 加载中
    1. [1]

      Mei, J.; Huang, Y. H.; He, T. Progress and trends in AIE-based bioprobes: A brief overview. ACS Appl. Mater. Interfaces 2018, 10, 12217–12261.  doi: 10.1021/acsami.7b14343

    2. [2]

      Yang, J.; Huang, J.; Li, Q.; Li, Z. Blue AIEgens: Approaches to control the intramolecular conjugation and the optimized performance of OLED devices. J. Mater. Chem. C 2016. 4, 2663–2684.

    3. [3]

      Li, Q.; Li, Z. The strong light-emission materials in the aggregated state: What happens from a single molecule to the collective group. Adv. Sci. 2017. 4, 1600484.  doi: 10.1002/advs.v4.7

    4. [4]

      Wu, Y. W.; Qin, A. J.; Tang, B. Z. AIE-active Polymers for Explosive Detection. Chinese J. Polym. Sci. 2017, 35, 141–154.  doi: 10.1007/s10118-017-1882-0

    5. [5]

      Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O Thermochromic polymers—Function by design. Chem. Rev. 2014, 114, 3037–3068.  doi: 10.1021/cr400462e

    6. [6]

      Wang, D. P.; Miyamato, R.; Shiraishi, Y.; Hirai, T. BODIPY-conjugated thermoresponsive copolymer as a fluorescent thermometer based on polymer microviscosity. Langmuir 2009, 25, 13176–13182.  doi: 10.1021/la901860x

    7. [7]

      Yan, Q.; Yuan, J. Y.; Yuan, W. Z.; Zhou, M.; Yin, Y. W.; Pan, C. Y. Copolymer logical switches adjusted through core-shell micelles: From temperature response to fluorescence response. Chem. Commun. 2008, 46, 6188–6190.

    8. [8]

      Shiraishi, Y.; Miyamoto, R.; Hirai, T. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer. Langmuir 2008. 24, 4273–4279.  doi: 10.1021/la703890n

    9. [9]

      Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009, 131, 2766–2767.  doi: 10.1021/ja807714j

    10. [10]

      Zhao, L. Y.; Liu, Y. N.; Wang, S. F.; Tao, Y. T.; W, F. F.; Zhang, X. W.; Huang, W. Novel hyperbranched polymers as host materials for green thermally activated delayed fluorescence OLEDs. Chinese J. Polym. Sci. 2017, 35, 490–502.  doi: 10.1007/s10118-017-1881-1

    11. [11]

      Chen, J. R.; Zhao, J.; Xu, B. J.; Yang, Z. Y.; Liu, S. W.; Xu, J. R.; Zhang, Y.; Wu, Y. C.; Lv, P. Y.; Chi, Z. G. An AEE-active polymer containing tetraphenylethene and 9, 10-distyrylanthracene moieties with remarkable mechanochromism. Chinese J. Polym. Sci. 2017. 35, 282–292.  doi: 10.1007/s10118-017-1894-9

    12. [12]

      Tang, L.; Jin, J. K.; Qin, A. J.; Yuan, W. Z.; Mao, Y.; Mei, J.; Sun, J. Z.; Tang, B. Z. A fluorescent thermometer operating in aggregation-induced emission mechanism: Probing thermal transitions of PNIPAM in water. Chem. Commun. 2009, 33, 4974–4976.

    13. [13]

      Guo, Y.; Yu, X.; Xue, W.; Huang, S.; Dong, J.; Wei, L.; Maroncelli, M.; Li, H. Synthesis, structures, and properties of a fluoranthene-based biphenol polymer as a fluorescent nano-thermometer. Chem. Eng. J. 2014, 240, 319–330.  doi: 10.1016/j.cej.2013.11.081

    14. [14]

      Kim, S.; Torkelson, J. M. Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films: A test of de Gennes’ sliding motion mechanism. Macromolecules 2011, 44, 4546–4553.  doi: 10.1021/ma200617j

    15. [15]

      Pietsch, C.; Vollrath, A.; Hoogenboom, R.; Schubert, U. S. A fluorescent thermometer based on a pyrene-labeled thermoresponsive polymer. Sensors 2010, 10, 7979–7990.  doi: 10.3390/s100907979

    16. [16]

      Wang, Z.; Chen, S.; Lam, J. W. Y.; Qin, W.; Kwok, R. T. K.; Xie, N.; Hu, Q. L.; Tang, B. Z. Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates. J. Am. Chem. Soc. 2013, 135, 8238–8245.  doi: 10.1021/ja312581r

    17. [17]

      Hu, R.; Kang, Y.; Tang, B. Z. Recent advances in AIE polymers. Polymer Journal 2016, 48, 359–370.  doi: 10.1038/pj.2016.1

    18. [18]

      Zhao, W.; Li, C.; Liu, B.; Wang, X.; Li, P.; Wang, Y.; Wu, C.; Yao, C.; Tang, T.; Liu, X. A new strategy to access polymers with aggregation-induced emission characteristics. Macromolecules 2014, 47, 5586–5594.  doi: 10.1021/ma500985j

    19. [19]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.  doi: 10.1021/acs.chemrev.5b00263

    20. [20]

      Huang, M.; Hsu, C. H.; Wang, J.; Mei, S.; Dong, X.; Li, M.; Liu, H.; Zhang, W.; Aida, T. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science. 2015, 348, 424–428.  doi: 10.1126/science.aaa2421

    21. [21]

      Bao, S. P.; Wu, Q. H.; Qin, W.; Yu, Q. L.; Wang, J.; Liang, G. D.; Tang, B. Z. Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. Polym. Chem. 2015, 6, 3537–3542.  doi: 10.1039/C5PY00308C

    22. [22]

      Mindemark, J.; Bowden, T. Synthesis and polymerization of alkyl halide-functional cyclic carbonates. Polymer. 2011, 52, 5716–5722.  doi: 10.1016/j.polymer.2011.10.027

    23. [23]

      Liang, G. D.; Ren, F.; Gao, H. Y.; Wu, Q.; Zhu, F. M.; Tang, B. Z. Continuously-tunable fluorescent polypeptides through polymer-assisted assembly strategy. Polym. Chem. 2016, 7, 5181  doi: 10.1039/C6PY01218C

    24. [24]

      Wei, W.; Feng, S.; Zheng, C. X.; Liang, G. D.;Gao, H. Y.; Wu, Q.; Zhu, F. M. Glass transition and quantum yield for fluorescent labelled polystyrene core-forming block in self-assembled nanomicelles of amphiphilic diblock copolymers. J. Polym. Res. 2015, 22, 212.  doi: 10.1007/s10965-015-0855-7

    25. [25]

      Sasaki, T. Melting of poly(ε-caprolactone) studied by step-heating calorimetry. J. Therm. Anal. Calorim. 2013, 111, 717–724.  doi: 10.1007/s10973-012-2209-6

    26. [26]

      Liu, C. L.; Lin, M. C.; Chen, H. L.; Műller, A. J. Evolution of crystal orientation in one-dimensionally confined space templated by lamellae-forming block copolymers. Macromolecules 2015, 48, 4451–4460.  doi: 10.1021/acs.macromol.5b00898

    27. [27]

      He, W. N.; Zhou, B.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Two growth modes of semicrystalline cylindrical poly(ε-caprolactone)-b-poly(ethylene oxide) micelles. Macromolecules 2012, 45, 9768–9778.  doi: 10.1021/ma301267k

    28. [28]

      He, W. N.; Xu, J. T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 2012, 37, 1350–1400.  doi: 10.1016/j.progpolymsci.2012.05.002

  • 加载中
    1. [1]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    2. [2]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    3. [3]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    6. [6]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    7. [7]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    8. [8]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    9. [9]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    10. [10]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    11. [11]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    12. [12]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    13. [13]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    14. [14]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    15. [15]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    16. [16]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    17. [17]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    18. [18]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    19. [19]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(976)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return