Citation: Man-Zhu Zhao, Dong-Bing Cheng, Zhao-Ru Shang, Lei Wang, Zeng-Ying Qiao, Jing-Ping Zhang, Hao Wang. An “In Vivo Self-assembly” Strategy for Constructing Superstructures for Biomedical Applications[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1103-1113. doi: 10.1007/s10118-018-2170-3 shu

An “In Vivo Self-assembly” Strategy for Constructing Superstructures for Biomedical Applications

  • Corresponding author: Jing-Ping Zhang, zhangjp162@nenu.edu.cn Hao Wang, wanghao@nanoctr.cn
  • † These authors contributed equally to this work
  • Received Date: 18 May 2018
    Revised Date: 10 June 2018
    Accepted Date: 12 June 2018
    Available Online: 11 July 2018

  • The interfacing study of biopolymer and supramolecular chemistry enables a better understanding of fundamental biochemical processes and the creating of new high-performance biomaterials. In this review, we introduced an " in vivo self-assembly” strategy which means in situ construction of functional self-assembled superstructures in specific physiological or pathological conditions in cell, tissue or animal levels that exhibit diverse biomedical effects. By using this strategy, unexpected phenomena and insights, e.g, assembly/aggregation induced retention (AIR) effect have been demonstrated where the self-assembled nanostructures showed extraordinary enhanced accumulation and retention of therapeutics in targeted sites.
  • 加载中
    1. [1]

      Bellapadrona, G.; Elbaum, M. Supramolecular protein assemblies in the nucleus of human cells. Angew. Chem. Int. Ed. 2014, 126(6), 1560−1563  doi: 10.1002/ange.201309163

    2. [2]

      Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Sov. Rev. 2007, 36(2), 151−160  doi: 10.1039/B616752G

    3. [3]

      Kolesnichenko, L. V.; Anslyn, E. V. Practical applications of supramolecular chemistry. Chem. Sov. Rev. 2017, 46(9), 2385−2390  doi: 10.1039/C7CS00078B

    4. [4]

      Yang, H.; Yuan, B.; Zhang, X. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47(7), 2106−2115  doi: 10.1021/ar500105t

    5. [5]

      Wang, L.; Li, L. L.; Fan, Y. S.; Wang, H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater. 2013, 25(28), 3888−3898  doi: 10.1002/adma.v25.28

    6. [6]

      Sun, K.; Luo, J. Y.; Zhang, X.; Wu, Z. J.; Wang, Y.; Yuan, H. K.; Xiong, Z. H.; Li, S. C.; Xue, Q. K.; Wang, J. Z. Supramolecular motors on graphite surface stabilized by charge states and hydrogen bonds. ACS Nano 2017, 11(10), 10236−10242  doi: 10.1021/acsnano.7b04811

    7. [7]

      Nayani, K.; Kim, Y. K.; Abbott, N. L. Colloids: Chiral interactions in liquid crystals. Nat. Mater. 2018, 17, 14−15

    8. [8]

      Tamaki, Y.; Ishitani. O. Supramolecular photocatalysts for the reduction of CO2. ACS Catal. 2017, 7(5), 3394−3409  doi: 10.1021/acscatal.7b00440

    9. [9]

      Cheng, D. B.; Qi, G. B.; Wang, J. Q.; Cong, Y.; Liu, F. H.; Yu, H. J.; Qiao, Z. Y.; Wang, H. In situ monitoring intracellular structural change of nanovehicles through photoacoustic signals based on phenylboronate-kinked RGD-dextran/purpurin 18 conjugates. Biomacromolecules 2017, 18(4), 1249−1258  doi: 10.1021/acs.biomac.6b01922

    10. [10]

      Cheng, D. B.; Li, Y. M.; Cheng, Y. J.; Wu, Y.; Chang, X. P.; He, F.; Zhuo, R. X. Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate. Colloids Surf., B 2015, 1(136), 618−624

    11. [11]

      Wang, D. E.; Yan, J.; Jiang, J.; Liu, X.; Tian, C.; Xu, J.; Yuan, M. S.; Han, X.; Wang, J. Polydiacetylene liposomes with phenylboronic acid tags: a fluorescence turn-on sensor for sialic acid detection and cell-surface glycan imaging. Nanoscale 2018, 10(9), 4570−4578  doi: 10.1039/C7NR08557E

    12. [12]

      Kim, C. B.; Jeong, K. B.; Yang, B. J.; Song, J. W.; Ku, B. C.; Lee, S.; Lee, S. K.; Park, C. Facile supramolecular processing of carbon nanotubes and polymers for electromechanical sensors. Angew. Chem. Int. Ed. 2017, 129(51), 16398−16403  doi: 10.1002/ange.v129.51

    13. [13]

      Chaudhari, A. K.; Tan, J. C. A mechano-responsive supramolecular metal-organic framework (supraMOF) gel material rich in ZIF-8 nanoplates. Chem. Commun. 2017, 53(61), 8502−8505  doi: 10.1039/C7CC03478D

    14. [14]

      Gao, F. P.; Lin, Y. X.; Li, L. L.; Liu, Y.; Mayerhoffer, U.; Spenst, P.; Su, J. G.; Li, J. Y.;Wurthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials 2014, 3(35), 1004−1014

    15. [15]

      Luo, Q.; Lin, Y. X.; Yang, P. P.; Wang, Y.; Qi, G. B.; Qiao, Z. Y.; Li, B. N.; Zhang, K.; Zhang, J. P.; Wang, L.; Wang, H. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat. Commun. 2018, 9, 1802  doi: 10.1038/s41467-018-04255-z

    16. [16]

      Liu, T.; Zhang, Y. F.; Liu, S. Y. Drug and plasmid DNA co-delivery nanocarriers based on abctype polypeptide hybrid miktoarm star copolymers. Chinese J. Polym. Sci. 2013, 31(6), 924−937  doi: 10.1007/s10118-013-1281-0

    17. [17]

      Cheng, D. B.; Yang, P. P.; Cong, Y.; Liu, F. H.; Qiao, Z. Y.; Wang H. One-pot synthesis of pH-responsive hyperbranched polymer-peptide conjugates with enhanced stability and loading efficiency for combined cancer therapy. Polym. Chem. 2017, 8(16), 2462−2471  doi: 10.1039/C7PY00101K

    18. [18]

      He, P.; Zhao, C. W.; Xiao, C. S.; Tang, Z. H.; Chen, X. S. Thermosensitive polyion complex micelles prepared by self-assembly of two oppositely charged diblock copolymers. Chinese J. Polym. Sci. 2013, 31(2), 318−324  doi: 10.1007/s10118-013-1226-7

    19. [19]

      Ling, D. S.; Park, W.; Park, S. J.; Lu, Y.; Kim, K. S.; Hackett, M. J.; Kim, B. H.; Yim, H.; Jeon, Y. S.; Na, K.; Hyeon, T. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 2014, 136(15), 5647−5655  doi: 10.1021/ja4108287

    20. [20]

      Yang, Z. M.; Liang, G. L.; Wang, L.; Xu, B. Using a Kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc. 2006, 128(9), 3038−3043  doi: 10.1021/ja057412y

    21. [21]

      Wang, H.; Feng, Z.; Wu, D.; Fritzsching, K. J.; Rigney, M.; Zhou, J.; Jiang, Y.; Rohr, K. S.; Xu, B. enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 2016, 138(34), 10758−10761  doi: 10.1021/jacs.6b06075

    22. [22]

      Yang, Z. M.; Xu, K. M.; Guo, Z. F.; Guo, Z. H.; Xu, B. Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv. Mater. 2007, 19(20), 3152−3156  doi: 10.1002/adma.200701971

    23. [23]

      Kuang, Y.; Shi, J.; Li, J.; Yuan, D.; Alberti, K. A.; Xu, Q.; Xu, B. Pericellular hydrogel/nanonets inhibit cancer cells. Angew. Chem. Int. Ed. 2014, 53(31), 8104−8107  doi: 10.1002/anie.201402216

    24. [24]

      Zhang, D.; Qi, G. B.; Zhao, Y. X.; Qiao, S. L.; Yang, C.; Wang, H. In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater. 2015, 27(40), 6125−6130  doi: 10.1002/adma.201502598

    25. [25]

      Jeena, M. T.; Palanikumar, L.; Go, E. M.; Kim, I.; Kang, M. G.; Lee, S.; Park, S.; Choi, H.; Kim, C.; Jin, S. M.; Bae, S. C.; Rhee, H. W.; Lee, E.; Kwak, S. K.; Ryu, J. R. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 2017, 8, 26  doi: 10.1038/s41467-017-00047-z

    26. [26]

      Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun. 2012, 3, 1033  doi: 10.1038/ncomms2040

    27. [27]

      Qiao, S. L.; Wang, Y.; Lin, Y. X.; An, H. W.; Ma, Y.; Li, L. L.; Wang, L.; Wang, H. Thermo-controlled in situ phase transition of polymer-peptides on cell surfaces for high-performance proliferative inhibition. ACS Appl. Mater. Interfaces 2016, 8(27), 17016−17022  doi: 10.1021/acsami.6b04580

    28. [28]

      Qiao, S. L.; Ma, Y.; Wang, Y.; Lin, Y. X.; An, H. W.; Li, L. L.; Wang, H. General approach of stimuli-induced aggregation for monitoring tumor therapy. ACS Nano 2017, 11(7), 7301−7311  doi: 10.1021/acsnano.7b03375

    29. [29]

      Hu, X.; Sun, J. H.; Li, F. Y.; Li, R. Q.; Wu, J. H.; He, J.; Wang, N.; Liu, J. N.; Wang, S. F.; Zhou, F.; Sun, X. L.; Kim, D.; Hyeon, T.; Ling, D. S. Renal-clearable hollow bismuth subcarbonate nanotubes for tumor targeted computed tomography imaging and chemoradiotherapy. Nano Lett. 2018, 18(2), 1196−1204  doi: 10.1021/acs.nanolett.7b04741

    30. [30]

      Huang, P.; Gao, Y.; Lin, J.; Hu, H.; Liao, H. S.; Yan, X.; Tang, Y.; Jin, A.; Song, J.; Niu, G.; Zhang, G.; Horkay, F.; Chen. X. Y. Tumor-specific formation of enzyme-instructed supramolecular self-Assemblies as cancer theranostics. ACS Nano 2015, 9(10), 9517−9527  doi: 10.1021/acsnano.5b03874

    31. [31]

      Xu, A. P.; Yang, P. P.; Yang, C.; Gao, Y. J.; Zhao, X. X.; Luo, Q.; Li, X. D.; Li, L. Z.; Wang, L.; Wang. H. Bio-inspired metal ions regulate the structure evolution of self-assembled peptide-based nanoparticles. Nanoscale 2016, 8(29), 14078−14083  doi: 10.1039/C6NR03580A

    32. [32]

      Ye, D.; Shuhendler, A. J.; Cui, L.; Tong, L.; Tee, S. S.; Tikhomirov, G.; Felsher, D. M.; Rao, J. H. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem. 2014, 6, 519−526  doi: 10.1038/nchem.1920

    33. [33]

      Li, L. L.; Qiao, S. L.; Liu, W. J.; Ma, Y.; Wan, D.; Pan, J.; Wang, H. Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat. Commun. 2017, 8, 1276  doi: 10.1038/s41467-017-01296-8

    34. [34]

      Geng, L.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249−255  doi: 10.1038/nnano.2007.70

    35. [35]

      Bentolila, L. A.; Ebenstein, Y.; Weiss, S. Quantum dots for in vivo small-animal imaging. J. Nucl. Med. 2009, 50(4), 493−496  doi: 10.2967/jnumed.108.053561

    36. [36]

      Andrasi, A. D.; Kothapalli, S. R.; Tikhomirow, G. A.; Rao, J. H.; Gambhir, S. S. Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects. J. Am. Chem. Soc. 2013, 135(30), 11015−11022  doi: 10.1021/ja4010078

    37. [37]

      Shuhendler, A. J.; Ye, D.; Brewer, K. D.; Cater, M. B.; Lee, K. H.; Kempen, P.; Wittrup, D.; Graves, E. E.; Rutt, B.; Rao, J. H. Molecular magnetic resonance imaging of tumor response to therapy. Sci. Rep. 2013, 5, 14795

    38. [38]

      Nejadnik, H.; Ye, D.; Lenkov, O. D.; Doing, J. S.; Martin, J. E.; Castillo, R.; Derugin, N.; Sennino, B.; Rao, J. H.; Link, H. D. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent. ACS Nano 2015, 9(2), 1150−1160  doi: 10.1021/nn504494c

    39. [39]

      Palner, M.; Shen, B.; Jeon, J.; Lin, J.; Chin, F. T.; Rao, J. H. Preclinical kinetic analysis of the Caspase-3/7 PET tracer 18F-C-SNAT for imaging tumor apoptosis after chemotherapeutic treatment. J. Nucl. Med. 2015, 56(9), 1415−1421  doi: 10.2967/jnumed.115.155259

    40. [40]

      Lin, Y. X.; Qiao, S. L.; Wang, Y.; Zhang, R. X.; An, H. W.; Ma, Y.; Rajapaksha, R. P. Y. J.; Qiao, Z. Y.; Wang, L.; Wang, H. An in situ intracellular self-assembly strategy for quantitatively and temporally monitoring autophagy. ACS Nano 2017, 11(2), 1826−1839  doi: 10.1021/acsnano.6b07843

    41. [41]

      Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28(34), 7340−7364  doi: 10.1002/adma.201601498

    42. [42]

      Gao, Y.; Kuang, Y.; Guo, Z. F.; Guo, Z.; Krauss, I. J.; Xu, B. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J. Am. Chem. Soc. 2009, 131(38), 13576−13577  doi: 10.1021/ja904411z

    43. [43]

      Callmann, C. E.; Barback, C. V.; Thompson, M. P.; Hall, D. J.; Mattrey, R. F.; Gianneschi, N. C. Therapeutic enzyme‐responsive nanoparticles for targeted delivery and accumulation in tumors. Adv. Mater. 2015, 27(31), 4611−4615  doi: 10.1002/adma.v27.31

    44. [44]

      Nguyen, M. M.; Carlini, A. S.; Chien, M. P.; Sonnenberg, S.; Luo, C.; Braden, R. L.; Osborn, K. G.; Li, Y.; Gianneschi, N. C.; Christman, K. L. Responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv. Mater. 2015, 27(37), 5547−5552  doi: 10.1002/adma.201502003

    45. [45]

      Yang, P. P.; Luo, Q.; Qi, G. B.; Gao, Y. J.; Li, B. N.; Zhang, J. P.; Wang, L.; Wang, H. Host materials transformable in tumor microenvironment for homing theranostics. Adv. Mater. 2017, 29(15), 1605869  doi: 10.1002/adma.201605869

    46. [46]

      Zorn, J. A.; Wille, H.; Wolan, D. W.; Wells, J. A. Self-assembling small molecules form nanofibrils that bind procaspase-3 to promote activation. J. Am. Chem. Soc. 2011, 133(49), 19630−19633  doi: 10.1021/ja208350u

    47. [47]

      Kuang, Y.; Xu, B. Disruption of the dynamics of microtubules and selective inhibition of glioblastoma cells by nanofibers of small hydrophobic molecules. Angew. Chem. Int. Ed. 2013, 52(27), 6944−6948  doi: 10.1002/anie.201302658

    48. [48]

      Yuan, Y.; Wang, L.; Du, W.; Ding, Z.; Zhang, J.; Han, T.; An, L.; Zhang, H. F.; Liang, G. L. Intracellular self-assembly of taxol nanoparticles for overcoming multidrug resistance. Angew. Chem. Int. Ed. 2015, 54(33), 9700−9704  doi: 10.1002/anie.v54.33

    49. [49]

      Zhou, J.; Du, X.; Yamagata, N.; Xu, B. Enzyme-instructed self-assembly of small d-peptides as a multiple-step process for selectively killing cancer cells. J. Am. Chem. Soc. 2016, 138(11), 3813−3823  doi: 10.1021/jacs.5b13541

    50. [50]

      Tanaka, A.; Fukuoka, Y.; Morimoto, Y.; Honjo, T.; Koda, D.; Goto, M.; Tatsuo, M. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J. Am. Chem. Soc. 2015, 137(2), 770−775  doi: 10.1021/ja510156v

    51. [51]

      Hu, X. X.; He, P. P.; Qi, G. B.; Gao, Y. J.; Lin, Y. X.; Yang, C.; Yang, P. P.; Hao, H.; Wang, L.; Wang, H. Transformable nanomaterials as an artificial extracellular matrix for inhibiting tumor invasion and metastasis. ACS Nano 2017, 11(4), 4086−4096  doi: 10.1021/acsnano.7b00781

    52. [52]

      Qi, G. B.; Gao, Y. J.; Wang, L.; Wang, H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, DOI: 10.1002/adma.201703444

    53. [53]

      Li, L. L.; Zeng, Q.; Liu, W. J.; Hu, X. F.; Li, Y.; Pan, J.; Wan, D.; Wang, H. Quantitative analysis of caspase-1 activity in living cells through dynamic equilibrium of chlorophyll-based nano-assembly modulated photoacoustic signals. ACS Appl. Mater. Interfaces 2016, 8(28), 17936−17943  doi: 10.1021/acsami.6b05795

    54. [54]

      Li, L. L.; Ma, H. L.; Qi, G. B.; Zhang, D.; Yu. F.; Hu. Z.; Wang, H. Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv. Mater. 2016, 28(2), 254−262  doi: 10.1002/adma.201503437

    55. [55]

      Li, L. L.; Xu, J. H.; Qi, G. B.; Zhao, X. Z.; Yu F.; Wang, H. Core-shell supramolecular gelatin nanoparticles for adaptive and " on-demand” antibiotic delivery. ACS Nano 2014, 5(8), 4975−4983

    56. [56]

      Bunschoten, A.; Welling, M. M.; Termaat, M. F.; Sathekge, M.; Leeuwen, F. W. Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug. Chem. 2013, 24(12), 1971−1989  doi: 10.1021/bc4003037

    57. [57]

      Zhao, X.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C. A. E.; Zhang, S.; Lu, J. R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39(9), 3480−3498  doi: 10.1039/b915923c

    58. [58]

      Yang, Z. M.; Liang, G. L.; Guo, Z. F.; Guo, Z. H.; Xu, B. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew. Chem. Int. Ed. 2007, 46(43), 8216−8219  doi: 10.1002/(ISSN)1521-3773

    59. [59]

      Qi, G. B.; Zhang, D.; Liu, F. H.; Qiao, Z. Y.; Wang, H. An " on-site transformation” strategy for treatment of bacterial infection. Adv. Mater. 2017, 29(36), 1703461  doi: 10.1002/adma.201703461

  • 加载中
    1. [1]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    4. [4]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    5. [5]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    6. [6]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    7. [7]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    8. [8]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    9. [9]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    10. [10]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    11. [11]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    12. [12]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    13. [13]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    14. [14]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    15. [15]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    16. [16]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    17. [17]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    18. [18]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    19. [19]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    20. [20]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

Metrics
  • PDF Downloads(0)
  • Abstract views(898)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return