Citation: Liang-Bin Li. In Situ Synchrotron Radiation Techniques: Watching Deformation-induced Structural Evolutions of Polymers[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1093-1102. doi: 10.1007/s10118-018-2169-9 shu

In Situ Synchrotron Radiation Techniques: Watching Deformation-induced Structural Evolutions of Polymers

  • Corresponding author: Liang-Bin Li, lbli@ustc.edu.cn
  • Received Date: 24 April 2018
    Revised Date: 5 June 2018
    Accepted Date: 12 June 2018
    Available Online: 11 July 2018

  • Synchrotron radiation (SR) provides highly brilliant light with tunable wavelength from hard X-ray to far infrared, on which scattering, spectroscopy and imaging techniques with high time and spatial resolutions have been developed for in situ study on biological system and materials like polymer. With examples on flow-induced crystallization of polymer, deformation of nanoparticle filler network in rubber composite and necking propagation in tensile stretch, current work attempts to demonstrate the advantages of in situ synchrotron radiation X-ray scattering, X-ray nano-CT and infrared imaging in the study of deformation-induced multi-scale structural evolutions of polymers. With time resolution up to sub-ms, synchrotron radiation is expected to play a great role in understanding non-equilibrium polymer physics under processing and service conditions, while high-throughput characterization platform based on synchrotron radiation opens the possibility to establish polymer Materials Genome database in processing parameter space within reasonable time, which can serve as the roadmap for industrial polymer processing and accelerate material innovation.
  • 加载中
    1. [1]

      Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L. Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem. Rev. 2018, 118(4), 1840−1886  doi: 10.1021/acs.chemrev.7b00500

    2. [2]

      Tang, Y. J.; Jiang, Z. Y.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J.; An, L. J.; Men, Y. F. Mapping the damaged zone around the crack tip in high density polyethylene with synchrotron microfocus small angle X-ray scattering technique. Chinese J. Polym. Sci. 2010, 28(2), 165−170  doi: 10.1007/s10118-010-8243-6

    3. [3]

      Lu, Y.; Sun, Y. Y.; Chen, R.; Li, X. H.; Men, Y. F. Deformation temperature and lamellar thickness dependency of Form I to Form III phase transition in syndiotactic polypropylene during tensile stretching. Chinese J. Polym. Sci. 2014, 32(9), 1210−1217  doi: 10.1007/s10118-014-1494-x

    4. [4]

      Xu, J. Z.; Chen, C.; Wang, Y.; Tang, H.; Li, Z. M.; Hsiao, B. S. Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 2011, 44(8), 2808−2818  doi: 10.1021/ma1028104

    5. [5]

      Portale, G.; Hermida-Merino, D.; Bras, W. Polymer research and synchrotron radiation perspectives. Eur. Polym. J. 2016, 81, 415−432  doi: 10.1016/j.eurpolymj.2016.04.015

    6. [6]

      Thurman, D. W.; Fernandez-Ballester, L.; Oberhauser, J. P.; Kornfield, J. A. Shear-mediated crystallization of isotactic polypropylene: A wide angle X-ray study of the role of long chains. Abstracts of Papers of the American Chemical Society 2004, 228, U442

    7. [7]

      Kumaraswamy, G.; Verma, R. K.; Kornfield, J. A.; Yeh, F.; Hsiao, B. S. Shear-enhanced crystallization in isotactic polypropylene. In situ synchrotron SAXS and WAXD. Macromolecules 2004, 37(24), 9005−9017  doi: 10.1021/ma035840n

    8. [8]

      Wang, Z.; Hsiao, B. S.; Sirota, E. B.; Agarwal, P.; Srinivas, S. Probing the early stages of melt crystallization in polypropylene by simultaneous small- and wide- angle X-ray scattering and laser light scattering. Macromolecules 2000, 33(3), 978−989  doi: 10.1021/ma991468t

    9. [9]

      Ma, Z.; Balzano, L.; Peters, G. W. Dissolution and re-emergence of flow-induced shish in polyethylene with a broad molecular weight distribution. Macromolecules 2016, 49(7), 2724−2730  doi: 10.1021/acs.macromol.6b00333

    10. [10]

      Ma, Z.; Fernandez-Ballester, L.; Cavallo, D.; Gough, T.; Peters, G. W. M. High-stress shear-induced crystallization in isotactic polypropylene and propylene/ethylene random copolymers. Macromolecules 2013, 46(7), 2671−2680  doi: 10.1021/ma302518c

    11. [11]

      Cui, K.; Meng, L.; Ji, Y.; Li, J.; Zhu, S.; Li, X.; Tian, N.; Liu, D.; Li, L. Extension-induced crystallization of poly(ethylene oxide) bidisperse blends: an entanglement network perspective. Macromolecules 2014, 47(2), 677−686  doi: 10.1021/ma402031m

    12. [12]

      Liu, D.; Tian, N.; Cui, K.; Zhou, W.; Li, X.; Li, L. Correlation between flow-induced nucleation morphologies and strain in polyethylene: from uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish. Macromolecules 2013, 46(9), 3435−3443  doi: 10.1021/ma400024m

    13. [13]

      Liu, Y.; Cui, K.; Tian, N.; Zhou, W.; Meng, L.; Li, L.; Ma, Z.; Wang, X. Stretch-induced crystal-crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle X-ray scattering study. Macromolecules 2012, 45(6), 2764−2772  doi: 10.1021/ma2026513

    14. [14]

      Cui, K. P.; Meng, L. P.; Tian, N.; Zhou, W. Q.; Liu, Y. P.; Wang, Z.; He, J.; Li, L. B. Self-acceleration of nucleation and formation of shish in extension-induced crystallization with strain beyond fracture. Macromolecules 2012, 45(13), 5477−5486  doi: 10.1021/ma300338c

    15. [15]

      Matsuba, G.; Zhao, Y. F.; Teratani, M.; Hayashi, Y.; Takayama, Y.; Ogino, Y.; Nishida, K.; Kanaya, T. Oriented structure in isotactic polystyrene melt induced by shear flow. Kobunshi Ronbunshu 2009, 66(10), 419−427  doi: 10.1295/koron.66.419

    16. [16]

      Yan, S.; Wu, Z.; Yu, H.; Gong, Y.; Tan, Y.; Du, R.; Chen, W.; Xing, X.; Mo, G.; Chen, Z. Time-resolved small-angle X-ray scattering study on the growth behavior of silver nanoparticles. J. Phys. Chem. C 2014, 118(21), 11454−11463  doi: 10.1021/jp502482c

    17. [17]

      Meng, L. P.; Chen, X. W.; Lin, Y. F.; Li, L. B. Improving the softness of BOPP films: from laboratory investigation to industrial processing. Chinese J. Polym. Sci. 2017, 35(9), 1122−1131  doi: 10.1007/s10118-017-1965-y

    18. [18]

      Wang, Z.; Ma, Z.; Li, L. Flow-induced crystallization of polymers: molecular and thermodynamic considerations. Macromolecules 2016, 49(5), 1505−1517  doi: 10.1021/acs.macromol.5b02688

    19. [19]

      Ma, Z.; Balzano, L.; Erp, T. V.; Portale, G.; Peters, G. W. M. Short-term flow induced crystallization in isotactic polypropylene: how short is short? Macromolecules 2013, 46(23), 9249−9258  doi: 10.1021/ma401833k

    20. [20]

      Li, Z.; Wu, Z.; Mo, G.; Xing, X.; Liu, P. A small-angle X-ray scattering station at Beijing synchrotron radiation facility. Instrum. Sci. Technol. 2014, 42(2), 128−141  doi: 10.1080/10739149.2013.845845

    21. [21]

      Wang, Z.; Ju, J.; Meng, L.; Tian, N.; Chang, J.; Yang, H.; Ji, Y.; Su, F.; Li, L. Structural and morphological transitions in extension-induced crystallization of poly(1-butene) melt. Soft Matter 2017, 13(19), 3639−3648  doi: 10.1039/C7SM00107J

    22. [22]

      Cui, K.; Liu, D.; Ji, Y.; Huang, N.; Ma, Z.; Wang, Z.; Lv, F.; Yang, H.; Li, L. Nonequilibrium nature of flow-induced nucleation in isotactic polypropylene. Macromolecules 2015, 48(3), 694−699  doi: 10.1021/ma502412y

    23. [23]

      Liu, Y.; Zhou, W.; Cui, K.; Tian, N.; Wang, X.; Liu, L.; Li, L.; Zhou, Y. Extensional rheometer for in-situ X-ray scattering study on flow-induced crystallization of polymer. Rev. Sci. Instrum. 2011, 82(4), 045104  doi: 10.1063/1.3574219

    24. [24]

      Meng, L.; Li, J.; Cui, K.; Chen, X.; Lin, Y.; Xu, J.; Li, L. A simple constrained uniaxial tensile apparatus for in-situ investigation of film stretching processing. Rev. Sci. Instrum. 2013, 84(11), 115104  doi: 10.1063/1.4828665

    25. [25]

      Zhang, R.; Ji, Y. X.; Zhang, Q. L.; Ju, J. Z.; Sarmad, A.; Li, L. F.; Zhao, H. Y.; Li, L. B. A universal blown film apparatus for in situ X-ray measurements. Chinese J. Polym. Sci. 2017, 35(12), 1508−1516  doi: 10.1007/s10118-017-2000-z

    26. [26]

      Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F. Critical strain for shish-kebab formation. Macromolecules 2009, 43(2), 602−605

    27. [27]

      Wang, Z. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene. Sci. Rep. 2016, 6, 32968  doi: 10.1038/srep32968

    28. [28]

      Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X.; Li, L. Extensional flow-induced dynamic phase transitions in isotactic polypropylene. Macromol. Rapid Commun. 2016, 37(17), 1441−1445  doi: 10.1002/marc.v37.17

    29. [29]

      Chen, X.; Lv, F.; Su, F.; Ji, Y.; Meng, L.; Wan, C.; Lin, Y.; Li, X.; Li, L. Deformation mechanism of iPP under uniaxial stretching over a wide temperature range: An in-situ synchrotron radiation SAXS/WAXS study. Polymer 2017, 118, 12−21  doi: 10.1016/j.polymer.2017.04.054

    30. [30]

      Chen, L.; Zhou, W.; Su, F.; Zhang, W.; Chen, P.; Ji, Y.; Li, L. Filler-induced heterogeneous distribution of stretch-induced crystallization in natural rubber: An in-situ synchrotron-radiation micro-focused scanning X-ray diffraction study. Polymer 2017, 115, 217−223  doi: 10.1016/j.polymer.2017.03.043

    31. [31]

      Lin, Y.; Meng, L.; Wu, L.; Li, X.; Chen, X.; Zhang, Q.; Zhang, R.; Zhang, W.; Li, L. A semi-quantitative deformation model for pore formation in isotactic polypropylene microporous membrane. Polymer 2015, 80, 214−227  doi: 10.1016/j.polymer.2015.10.067

    32. [32]

      Lin, Y.; Li, X.; Meng, L.; Chen, X.; Lv, F.; Zhang, Q.; Zhang, R.; Li, L. Structural evolution of hard-elastic isotactic polypropylene film during uniaxial tensile deformation: the effect of temperature. Macromolecules 2018, 51(7), 2690−2705  doi: 10.1021/acs.macromol.8b00255

    33. [33]

      Lv, F.; Chen, X.; Wan, C.; Su, F.; Ji, Y.; Lin, Y.; Li, X.; Li, L. Deformation of ultrahigh molecular weight polyethylene precursor fiber: crystal slip with or without melting. Macromolecules 2017, 50(17), 6385−6395  doi: 10.1021/acs.macromol.7b01153

    34. [34]

      Li, X.; Lin, Y.; Su, F.; Chen, X.; Lv, F.; Meng, L.; Zhang, Q.; Li, L. Stabilization mechanism of micropore in high-density polyethylene: a comparison between thermal and mechanical pathways. Macromol. Mater. Eng. 2017, 302(10), 1700178  doi: 10.1002/mame.v302.10

    35. [35]

      Li, X.; Meng, L.; Lin, Y.; Chen, X.; Zhang, Q.; Zhang, R.; Wu, L.; Zhang, W.; Li, L. Preparation of highly oriented polyethylene precursor film with fibril and its influence on microporous membrane formation. Macromol. Chem. Phys. 2016, 217(8), 974−986  doi: 10.1002/macp.v217.8

    36. [36]

      Li, X.; Lin, Y.; Ji, Y.; Meng, L.; Zhang, Q.; Zhang, R.; Zhang, W.; Li, L. Strain and temperature dependence of deformation mechanism of lamellar stacks in HDPE and its guidance on microporous membrane preparation. Polymer 2016, 105, 264−275  doi: 10.1016/j.polymer.2016.10.043

    37. [37]

      Lin, Y.; Li, X.; Meng, L.; Chen, X.; Lv, F.; Zhang, Q.; Zhang, R.; Li, L. Structural evolution of hard-elastic isotactic polypropylene film during uniaxial tensile deformation: the effect of temperature. Macromolecules 2018, 51(7), 2690−2705  doi: 10.1021/acs.macromol.8b00255

    38. [38]

      Kanaya, T.; Polec, I. A.; Fujiwara, T.; Inoue, R.; Nishida, K.; Matsuura, T.; Ogawa, H.; Ohta, N. Precursor of shish-kebab above the melting temperature by microbeam X-ray scattering. Macromolecules 2013, 46(8), 3031−3036  doi: 10.1021/ma400061a

    39. [39]

      Gutiérrez, M. C. G.; Alfonso, G. C.; Riekel, C.; Azzurri, F. Spatially resolved flow-induced crystallization precursors in isotactic polystyrene by simultaneous small- and wide-angle X-ray microdiffraction. Macromolecules 2004, 37(2), 478−485  doi: 10.1021/ma0350157

    40. [40]

      Su, F. M.; Li, X. Y.; Zhou, W. M.; Zhu, S. S.; Ji, Y. X.; Wang, Z.; Qi, Z. M.; Li, L. B. Direct formation of isotactic poly(1-butene) form I crystal from memorized ordered melt. Macromolecules 2013, 46(18), 7399−7405  doi: 10.1021/ma400952r

    41. [41]

      Zhou, W.; Li, X.; Lu, J.; Huang, N.; Chen, L.; Qi, Z.; Li, L.; Liang, H. Toughening mystery of natural rubber deciphered by double network incorporating hierarchical structures. Sci. Rep. 2014, 4, 7502

    42. [42]

      Melnikov, A.; Rosenthal, M.; Rodygin, A.; Doblas, D.; Anokhin, D.; Burghammer, M.; Ivanov, D. Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry. Eur. Polym. J. 2016, 81, 598−606  doi: 10.1016/j.eurpolymj.2015.12.031

    43. [43]

      Su, F.; Zhou, W.; Li, X.; Ji, Y.; Cui, K.; Qi, Z.; Li, L. Flow-induced precursors of isotactic polypropylene: an in situ time and space resolved study with synchrotron radiation scanning X-ray microdiffraction. Macromolecules 2014, 47(13), 4408−4416  doi: 10.1021/ma5005293

    44. [44]

      Su, F.; Ji, Y.; Meng, L.; Chang, J.; Chen, L.; Li, L. Shear-induced precursors in polyethylene: An in-situ synchrotron radiation scanning X-ray microdiffraction study. Polymer 2018, 135, 61−68  doi: 10.1016/j.polymer.2017.12.021

    45. [45]

      Chen, L.; Chen, W.; Zhou, W.; Li, J.; Liu, Y.; Qi, Z.; Li, L. In situ microscopic infrared imaging study on deformation-induced spatial orientation and phase transition distributions of PA12. J. Appl. Polym. Sci. 2014, 131(17), 40703

    46. [46]

      Chen, L.; Song, L.; Li, J.; Chen, P.; Huang, N.; Li, L. From the volume-filling effect to the stress-bearing network: the reinforcement mechanisms of carbon black filler in natural rubber. Macromol. Mater. Eng. 2016, 301(11), 1390−1401  doi: 10.1002/mame.v301.11

    47. [47]

      Chen, L.; Zhou, W.; Lu, J.; Li, J.; Zhang, W.; Huang, N.; Wu, L.; Li, L. Unveiling reinforcement and toughening mechanism of filler network in natural rubber with synchrotron radiation X-ray nano-computed tomography. Macromolecules 2015, 48(21), 7923−7928  doi: 10.1021/acs.macromol.5b01301

    48. [48]

      Song, L.; Wang, Z.; Tang, X.; Chen, L.; Chen, P.; Yuan, Q.; Li, L. Visualizing the toughening mechanism of nanofiller with 3D X-ray nano-CT: stress-induced phase separation of silica nanofiller and silicone polymer double networks. Macromolecules 2017, 50(18), 7249−7257  doi: 10.1021/acs.macromol.7b00539

    49. [49]

      Ellis, G. J.; Martin, M. C. Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy. Eur. Polym. J. 2016, 81, 505−531  doi: 10.1016/j.eurpolymj.2016.02.013

    50. [50]

      Geng, Y.; Wang, G.; Cong, Y.; Bai, L.; Li, L.; Yang, C. Shear-induced nucleation and growth of long helices in supercooled isotactic polypropylene. Macromolecules 2009, 42(13), 4751−4757  doi: 10.1021/ma9004567

    51. [51]

      An, H.; Li, X.; Geng, Y.; Wang, Y.; Wang, X.; Li, L.; Li, Z.; Yang, C. Shear-induced conformational ordering, relaxation, and crystallization of isotactic polypropylene. J. Phys. Chem. B 2008, 112(39), 12256−12262  doi: 10.1021/jp802511b

    52. [52]

      An, H.; Zhao, B.; Ma, Z.; Shao, C.; Wang, X.; Fang, Y.; Li, L.; Li, Z. Shear-induced conformational ordering in the melt of isotactic polypropylene. Macromolecules 2007, 40(14), 4740−4743  doi: 10.1021/ma071021h

    53. [53]

      Santoro, G.; Ochando, I. M.; Ellis, G. Advanced vibrational microspectroscopic study of conformational changes within a craze in poly(ethylene terephthalate). Macromolecules 2015, 48(4), 1162−1168  doi: 10.1021/ma502193t

    54. [54]

      Dumas, P.; Jamin, N.; Teillaud, J.; Miller, L.; Beccard, B. Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss. 2004, 126, 289−302  doi: 10.1039/b305065c

    55. [55]

      Li, H.; Zhou, W.; Ji, Y.; Hong, Z.; Miao, B.; Li, X.; Zhang, J.; Qi, Z.; Wang, X.; Li, L.; Li, Z. M. Spatial distribution of crystal orientation in neck propagation: An in-situ microscopic infrared imaging study on polyethylene. Polymer 2013, 54(2), 972−979  doi: 10.1016/j.polymer.2012.12.012

    56. [56]

      Su, F. M.; Li, X. Y.; Zhou, W. M.; Chen, W.; Li, H. L.; Cong, Y. H.; Hong, Z. H.; Qi, Z. M.; Li, L. B. Accelerating crystal-crystal transition in poly(1-butene) with two-step crystallization: An in-situ microscopic infrared imaging and microbeam X-ray diffraction study. Polymer 2013, 54(13), 3408−3416  doi: 10.1016/j.polymer.2013.04.046

    57. [57]

      Hong, Z.; Cong, Y.; Qi, Z.; Li, H.; Zhou, W.; Chen, W.; Wang, X.; Zhou, Y.; Li, L. Studying deformation behavior of a single spherulite with in-situ infrared microspectroscopic imaging. Polymer 2012, 53(2), 640−647  doi: 10.1016/j.polymer.2011.12.009

    58. [58]

      Li, J.; Li, H.; Meng, L.; Li, X.; Chen, L.; Chen, W.; Zhou, W.; Qi, Z.; Li, L. In-situ MR imaging on the plastic deformation of iPP thin films. Polymer 2014, 55(5), 1103−1107  doi: 10.1016/j.polymer.2014.01.033

    59. [59]

      Cong, Y.; Hong, Z.; Zhou, W.; Chen, W.; Su, F.; Li, H.; Li, X.; Yang, K.; Yu, X.; Qi, Z. Conformational ordering on the growth front of isotactic polypropylene spherulite. Macromolecules 2012, 45(21), 8674−8680  doi: 10.1021/ma301595k

    60. [60]

      Ling, S.; Qi, Z.; Knight, D. P.; Shao, Z.; Chen, X. Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 2011, 12(9), 3344−3349  doi: 10.1021/bm2006032

    61. [61]

      Cong, Y. H.; Hong, Z. H.; Qi, Z. M.; Zhou, W. M.; Li, H. L.; Liu, H.; Chen, W.; Wang, X.; Li, L. B. Conformational ordering in growing spherulites of isotactic polypropylene. Macromolecules 2010, 43(23), 9859−9864  doi: 10.1021/ma1019686

    62. [62]

      Chen, X.; Shao, Z.; Marinkovic, N. S.; Miller, L. M.; Zhou, P.; Chance, M. R. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys. Chem. 2001, 89(1), 25−34  doi: 10.1016/S0301-4622(00)00213-1

    63. [63]

      Lewis, E. N.; Treado, P. J.; Reeder, R. C.; Story, G. M.; Dowrey, A. E.; Marcott, C.; Levin, I. W. Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal. Chem. 1995, 67(19), 3377−3381  doi: 10.1021/ac00115a003

    64. [64]

      Liu, F.; Brady, M. A.; Wang, C. Resonant soft X-ray scattering for polymer materials. Eur. Polym. J. 2016, 81, 555−568  doi: 10.1016/j.eurpolymj.2016.04.014

    65. [65]

      Qi, F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. P. Combust. Inst. 2013, 34(1), 33−63  doi: 10.1016/j.proci.2012.09.002

    66. [66]

      Sikharulidze, I.; Dolbnya, I. P.; Fera, A.; Madsen, A.; Ostrovskii, B. I.; de Jeu, W. H. Smectic membranes in motion: Approaching the fast limits of X-ray photon correlation spectroscopy. Phys. Rev. Lett. 2002, 88(11), 115503  doi: 10.1103/PhysRevLett.88.115503

  • 加载中
    1. [1]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    6. [6]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    7. [7]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    8. [8]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    9. [9]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    10. [10]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    11. [11]

      Wei-Yu ZhouZi-Han XiNing-Ning DuLi YeMing-Hao JiangJin-Le HaoBin LinGuo-Dong YaoXiao-Xiao HuangShao-Jiang Song . Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall. using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation. Chinese Chemical Letters, 2024, 35(8): 109030-. doi: 10.1016/j.cclet.2023.109030

    12. [12]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    13. [13]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    14. [14]

      Qijie GongJian SongYihui SongKai TangPanpan YangXiao WangMin ZhaoLiang OuyangLi RaoBin YuPeng ZhanSaiyang ZhangXiaojin Zhang . New techniques and strategies in drug discovery (2020–2024 update). Chinese Chemical Letters, 2025, 36(3): 110456-. doi: 10.1016/j.cclet.2024.110456

    15. [15]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    16. [16]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    17. [17]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    18. [18]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    19. [19]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    20. [20]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

Metrics
  • PDF Downloads(0)
  • Abstract views(874)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return