-
[1]
Liu, D.; Poon, C.; Lu, K.; He, C.; Lin, W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat. Commun. 2014, 5, 4182
doi: 10.1038/ncomms5182
-
[2]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliver. Rev. 2013, 65(1), 71−79
doi: 10.1016/j.addr.2012.10.002
-
[3]
Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discover. Today 2006, 11(17), 812−818
-
[4]
Liu, D, H., Ding, J. X., Xu W. G., Song, X. F., Zhuang, X. L, Chen X. S. Stereocomplex micelles based on 4-armed poly(ethylene glycol)-polylactide enantiomeric copolymers for drug delivery. Acta Polymerica Sinica (in Chinese) 2014, (9), 1265−1273
-
[5]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33(9), 941−951
doi: 10.1038/nbt.3330
-
[6]
Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem. Int. Ed. 2006, 45(8), 1198−1215
doi: 10.1002/(ISSN)1521-3773
-
[7]
Pasut, G.; Veronese, F. M. PEG conjugates in clinical development or use as anticancer agents: An overview. Adv. Drug Deliver. Rev. 2009, 61(13), 1177−1188
doi: 10.1016/j.addr.2009.02.010
-
[8]
Fox, M. E.; Szoka, F. C.; Fréchet, J. M. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 2009, 42(8), 1141−1151
doi: 10.1021/ar900035f
-
[9]
Qiu, L. Y.; Bae, Y. H. Polymer architecture and drug delivery. Pharm. Res. 2006, 23(1), 1−30
doi: 10.1007/s11095-005-9046-2
-
[10]
Murakami, Y.; Tabata, Y.; Ikada, Y. Tumor accumulation of poly (ethylene glycol) with different molecular weights after intravenous injection. Drug Deliver. 1997, 4(1), 23−31
doi: 10.3109/10717549709033184
-
[11]
Tabata, Y.; Murakami, Y.; Ikada, Y. Tumor accumulation of poly (vinyl alcohol) of different sizes after intravenous injection. J. Control. Release 1998, 50(1-3), 123−133
doi: 10.1016/S0168-3659(97)00129-6
-
[12]
Lim, J.; Guo, Y.; Rostollan, C. L.; Stanfield, J.; Hsieh, J. T.; Sun, X.; Simanek, E. E. The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers. Mol. Pharmaceutics 2008, 5(4), 540−547
doi: 10.1021/mp8000292
-
[13]
Venturoli, D.; Rippe, B. Ficoll and dextran versus globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal Physiol. 2005, 288(4), F605−F613
doi: 10.1152/ajprenal.00171.2004
-
[14]
Asgeirsson, D.; Venturoli, D.; Fries, E.; Rippe, B.; Rippe, C. Glomerular sieving of three neutral polysaccharides, polyethylene oxide and bikunin in rat. Effects of molecular size and conformation. Acta Physiol. 2007, 191(3), 237−246
-
[15]
Gillies, E. R.; Dy, E.; Fréchet, J. M.; Szoka, F. C. Biological evaluation of polyester dendrimer: poly(ethylene oxide) " bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharmaceutics 2005, 2(2), 129−138
doi: 10.1021/mp049886u
-
[16]
Lee, C. C.; Gillies, E. R.; Fox, M. E.; Guillaudeu, S. J.; Fréchet, J. M.; Dy, E. E.; Szoka, F. C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(45), 16649−16654
doi: 10.1073/pnas.0607705103
-
[17]
Li, Y.; Xu, X.; Zhang, X.; Li, Y.; Zhang, Z.; Gu, Z. Tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with metabolic blockade surmount chemotherapy resistance. ACS Nano 2017, 11(1), 416−429
doi: 10.1021/acsnano.6b06161
-
[18]
Liu, C.; Chen, Y. X.; Wang, J. F.; Luo, X.; Huang, Y. D.; Xu, J. L.; Yan, G. P.; Chen, S.; Zhang, X, Z. A multi-functional drug delivery system based on dendritic peptide for tumor nuclear accurate targeting therapy. Acta Polymerica Sinica (in Chinese) 2048, (6), 682−691
doi: 10.11777/j.issn1000-3304.2017.17335
-
[19]
Lee, C. C.; MacKay, J. A.; Frechet, J. M. J.; Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 2005, 23(12), 1517−1526
doi: 10.1038/nbt1171
-
[20]
Allmeroth, M.; Moderegger, D.; Gündel, D.; Buchholz, H. G.; Mohr, N.; Koynov, K.; Rösch, F.; Thews, O.; Zentel, R. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J. Control. Release 2013, 172(1), 77−85
doi: 10.1016/j.jconrel.2013.07.027
-
[21]
Allmeroth, M.; Moderegger, D.; Gündel, D.; Koynov, K.; Buchholz, H. G.; Mohr, K.; Rösch, F.; Zentel, R.; Thews, O. HPMA-LMA copolymer drug carriers in oncology: an in vivo PET study to assess the tumor line-specific polymer uptake and body distribution. Biomacromolecules 2013, 14(9), 3091−3101
doi: 10.1021/bm400709z
-
[22]
Müllner, M.; Dodds, S. J.; Nguyen, T. H.; Senyschyn, D.; Porter, C. J.; Boyd, B. J.; Caruso, F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano 2015, 9(2), 1294−1304
doi: 10.1021/nn505125f
-
[23]
Irvine, D.; Mayes, A.; Griffith-Cima, L. Self-consistent field analysis of grafted star polymers. Macromolecules 1996, 29(18), 6037−6043
doi: 10.1021/ma951903t
-
[24]
Li, X.; Ji, J.; Wang, X.; Wang, Y.; Shen, J. Stability and drug loading of spontaneous vesicles of comb‐like PEG derivates. Macromol. Rapid Commun. 2007, 28(5), 660−665
doi: 10.1002/(ISSN)1521-3927
-
[25]
Chen, C. J.; Liu, G. Y.; Shi, Y. T.; Zhu, C. S.; Pang, S. P.; Liu, X. S.; Ji, J. Biocompatible micelles based on comb‐like PEG derivates: formation, characterization, and photo‐responsiveness. Macromol. Rapid Commun. 2011, 32(14), 1077−1081
doi: 10.1002/marc.v32.14
-
[26]
Talelli, M.; Rijcken, C.; van Nostrum, C.; Storm, G.; Hennink, W. Micelles based on HPMA copolymers. Adv. Drug Deliver. Rev. 2010, 62(2), 231−239
doi: 10.1016/j.addr.2009.11.029
-
[27]
Kopeček, J.; Kopečková, P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliver. Rev. 2010, 62(2), 122−149
doi: 10.1016/j.addr.2009.10.004
-
[28]
Kopeček, J.; Kopečková, P.; Minko, T.; Lu, Z. R. HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 2000, 50(1), 61−81
doi: 10.1016/S0939-6411(00)00075-8
-
[29]
Šírová, M.; Strohalm, J.; Chytil, P.; Lidický, O.; Tomala, J.; Říhová, B.; Etrych, T. The structure of polymer carriers controls the efficacy of the experimental combination treatment of tumors with HPMA copolymer conjugates carrying doxorubicin and docetaxel. J. Control. Release 2017, 246, 1−11
doi: 10.1016/j.jconrel.2016.12.004
-
[30]
Etrych, T.; Kovar, L.; Strohalm, J.; Chytil, P.; Rihova, B.; Ulbrich, K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J. Control. Release 2011, 154(3), 241−248
doi: 10.1016/j.jconrel.2011.06.015
-
[31]
Tomalova, B.; Sirova, M.; Rossmann, P.; Pola, R.; Strohalm, J.; Chytil, P.; Cerny, V.; Tomala, J.; Kabesova, M.; Rihova, B.; Ulbrich, K.; Etrych, T.; Kovar, M. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. J. Control. Release 2016, 223, 1−10
doi: 10.1016/j.jconrel.2015.12.023
-
[32]
Etrych, T.; Chytil, P.; Mrkvan, T.; Šírová, M.; Říhová, B.; Ulbrich, K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Control. Release 2008, 132(3), 184−192
doi: 10.1016/j.jconrel.2008.04.017
-
[33]
Wang, D. Synthesis of starlike N-(2-hydroxypropyl)-methacrylamide copolymers: Potential drug carriers. Biomacromolecules 2000, 1(3), 313−319
doi: 10.1021/bm0000236
-
[34]
Etrych, T.; Subr, V.; Strohalm, J.; Sirova, M.; Rihova, B.; Ulbrich, K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release 2012, 164(3), 346−354
doi: 10.1016/j.jconrel.2012.06.029
-
[35]
Fox, M. E.; Szoka, F. C.; Frechet, J. M. J. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 2009, 42(8), 1141−1151
doi: 10.1021/ar900035f
-
[36]
Yu, Q.; Zhang, J.; Zhang, G.; Gan, Z. Synthesis and functions of well‐defined polymer‐drug conjugates as efficient nanocarriers for intravesical chemotherapy of bladder cancer. Macromol. Biosci. 2015, 15(4), 509−520
doi: 10.1002/mabi.v15.4
-
[37]
Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 2001, 34(7), 2248−2256
-
[38]
Stals, P. J. M.; Li, Y.; Burdyńska, J.; Nicolaÿ, R.; Nese, A.; Palmans, A. R. A.; Meijer, E. W.; Matyjaszewski, K.; Sheiko, S. S. How far can we push polymer architectures? J. Am. Chem. Soc. 2013, 135(31), 11421−11424
doi: 10.1021/ja400890v
-
[39]
Shen, T.; Xu, X.; Guo, L.; Tang, H.; Diao, T.; Gan, Z.; Zhang, G.; Yu, Q. Efficient tumor accumulation, penetration and tumor growth inhibition achieved by polymer therapeutics: The effect of polymer architectures. Biomacromolecules 2017, 18(1), 217−230
doi: 10.1021/acs.biomac.6b01533
-
[40]
Seymour, L. W.; Ulbrich, K.; Strohalm, J.; Kopecek, J.; Duncan, R. The pharmacokinetics of polymer-bound adriamycin. Biochem. Pharmacol. 1990, 39(6), 1125−1131
doi: 10.1016/0006-2952(90)90293-T
-
[41]
Hedden, R. C.; Bauer, B. J.; Smith, A. P.; Grohn, F.; Amis, E. Templating of inorganic nanoparticles by PAMAM/PEG dendrimer-star polymers. Polymer 2002, 43(20), 5473−5481
doi: 10.1016/S0032-3861(02)00428-7
-
[42]
Hedden, R. C.; Bauer, B. J. Structure and dimensions of PAMAM/PEG dendrimer-star polymers. Macromolecules 2003, 36(6), 1829−1835
doi: 10.1021/ma025752n
-
[43]
Chen, C. J.; Liu, G. Y.; Shi, Y. T.; Zhu, C. S.; Pang, S. P.; Liu, X. S.; Ji, J. Biocompatible micelles based on comb-like PEG derivates: Formation, characterization, and photo-responsiveness. Macromol. Rapid Commun. 2011, 32(14), 1077−1081
doi: 10.1002/marc.v32.14
-
[44]
Bo, G.; Wesslén, B.; Wessléen, K. B. Amphiphilic comb-shaped polymers from poly(ethylene glycol) macromonomers. J. Polym. Sci., Part A: Polym. Chem. 1992, 30(9), 1799−1808
doi: 10.1002/pola.1992.080300903
-
[45]
Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1(4), 276−288
doi: 10.1038/nchem.257
-
[46]
Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 2008, 33(7), 759−785
doi: 10.1016/j.progpolymsci.2008.05.001
-
[47]
Plamper, F. A.; Schmalz, A.; Penott-Chang, E.; Drechsler, M.; Jusufi, A.; Ballauff, M.; Müller, A. H. E. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer 1995, 31A(5), 766−770
-
[48]
Seymour, L. W.; Miyamoto, Y.; Maeda, H.; Brereton, M.; Strohalm, J.; Ulbrich, K.; Duncan, R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer 1995, 31(5), 766−770
doi: 10.1016/0959-8049(94)00514-6
-
[49]
Yu, Q.; Wei, Z.; Shi, J.; Guan, S.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. Polymer–doxorubicin conjugate micelles based on poly (ethylene glycol) and poly (N-(2-hydroxypropyl) methacrylamide): Effect of negative charge and molecular weight on biodistribution and blood clearance. Biomacromolecules 2015, 16(9), 2645−2655
doi: 10.1021/acs.biomac.5b00460
-
[50]
Neugebauer, D.; Sumerlin, B. S.; Matyjaszewski, K.; Goodhart, B.; Sheiko, S. S. How dense are cylindrical brushes grafted from a multifunctional macroinitiator? Polymer 2004, 45(24), 8173−8179
doi: 10.1016/j.polymer.2004.09.069
-
[51]
Hu, Y.; Xie, J.; Tong, Y. W.; Wang, C. H. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J. Control. Release 2007, 118(1), 7−17
doi: 10.1016/j.jconrel.2006.11.028
-
[52]
Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size‐dependent endocytosis of nanoparticles. Adv. Mater. 2009, 21(4), 419−424
doi: 10.1002/adma.v21:4
-
[53]
Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf., B 2000, 18(3), 301−313
-
[54]
Liu, J.; Bauer, H.; Callahan, J.; Kopečková, P.; Pan, H.; Kopeček, J. Endocytic uptake of a large array of HPMA copolymers: Elucidation into the dependence on the physicochemical characteristics. J. Control. Release 2010, 143(1), 71−79
doi: 10.1016/j.jconrel.2009.12.022
-
[55]
Swift, L. P.; Rephaeli, A.; Nudelman, A.; Phillips, D. R.; Cutts, S. M. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res. 2006, 66(9), 4863−4871
doi: 10.1158/0008-5472.CAN-05-3410
-
[56]
Lin, W.; Zhang, X.; Qian, L.; Yao, N.; Pan, Y.; Zhang, L. Doxorubicin-loaded unimolecular micelle-stabilized gold nanoparticles as a theranostic nanoplatform for tumor-targeted chemotherapy and computed tomography imaging. Biomacromolecules 2017, 18(12), 3869−3880
doi: 10.1021/acs.biomac.7b00810
-
[57]
Gratton, S. E.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(33), 11613−11618
doi: 10.1073/pnas.0801763105
-
[58]
Meng, H.; Yang, S.; Li, Z. X.; Xia, T.; Chen, J.; Ji, Z. X.; Zhang, H. Y.; Wang, X.; Lin, S. J.; Huang, C.; Zhou, Z. H.; Zink, J. I.; Nel, A. E. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 2011, 5(6), 4434−4447
doi: 10.1021/nn103344k
-
[59]
Hu, X.; Hu, J.; Tian, J.; Ge, Z.; Zhang, G.; Luo, K.; Liu, S. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 2013, 135(46), 17617−17629
doi: 10.1021/ja409686x
-
[60]
Hu, X.; Liu, G.; Li, Y.; Wang, X.; Liu, S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 2015, 137(1), 362−368
doi: 10.1021/ja5105848
-
[61]
French, A. P.; Mills, S.; Swarup, R.; Bennett, M. J.; Pridmore, T. P. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat. Protoc. 2008, 3(4), 619−628
doi: 10.1038/nprot.2008.31
-
[62]
Bolte, S.; Cordelieres, F. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224(3), 213−232
doi: 10.1111/jmi.2006.224.issue-3
-
[63]
Adler, J.; Parmryd, I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry Part A 2010, 77(8), 733−742
-
[64]
Mullner, M.; Dodds, S. J.; Nguyen, T. H.; Senyschyn, D.; Porter, C. J. H.; Boyd, B. J.; Caruso, F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano 2015, 9(2), 1294−1304
doi: 10.1021/nn505125f