Citation: Hao Tang, Jin Tang, Yi Shen, Wen-Xuan Guo, Min Zhou, Rui-Hua Wang, Ni Jiang, Zhi-Hua Gan, Qing-Song Yu. Comb-like Poly(N-(2-hydroxypropyl) methacrylamide) Doxorubicin Conjugates: The Influence of Polymer Architecture and Composition on the Biological Properties[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1225-1238. doi: 10.1007/s10118-018-2159-y shu

Comb-like Poly(N-(2-hydroxypropyl) methacrylamide) Doxorubicin Conjugates: The Influence of Polymer Architecture and Composition on the Biological Properties

  • The synthesis and structure-property correlation of poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA) conjugates with various architectures including random, block, branched or star-like structures and compositions have been thoroughly explored. However, related synthesis and structure-property data are still lacking for comb-like PHPMA. In this work, we report the synthesis of comb-like PHPMA copolymer-doxorubicin (DOX) conjugates with different backbone/side-chain lengths and location of drug moieties. Well-defined comb-like PHPMA-DOX conjugates are obtained via the combination of controlled radical polymerization and fractional precipitation techniques. The influences of structural factors on the biological properties such as cellular uptake, blood circulation and tumor accumulation have been investigated. Long blood circulation and efficient tumor accumulation can be achieved by proper control of the comb number, length and location of drug moieties. These facile comb-like structures possess great potentials in future theranostics for brachytherapy or surgical navigation.
  • 加载中
    1. [1]

      Liu, D.; Poon, C.; Lu, K.; He, C.; Lin, W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat. Commun. 2014, 5, 4182  doi: 10.1038/ncomms5182

    2. [2]

      Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliver. Rev. 2013, 65(1), 71−79  doi: 10.1016/j.addr.2012.10.002

    3. [3]

      Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discover. Today 2006, 11(17), 812−818

    4. [4]

      Liu, D, H., Ding, J. X., Xu W. G., Song, X. F., Zhuang, X. L, Chen X. S. Stereocomplex micelles based on 4-armed poly(ethylene glycol)-polylactide enantiomeric copolymers for drug delivery. Acta Polymerica Sinica (in Chinese) 2014, (9), 1265−1273

    5. [5]

      Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33(9), 941−951  doi: 10.1038/nbt.3330

    6. [6]

      Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem. Int. Ed. 2006, 45(8), 1198−1215  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Pasut, G.; Veronese, F. M. PEG conjugates in clinical development or use as anticancer agents: An overview. Adv. Drug Deliver. Rev. 2009, 61(13), 1177−1188  doi: 10.1016/j.addr.2009.02.010

    8. [8]

      Fox, M. E.; Szoka, F. C.; Fréchet, J. M. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 2009, 42(8), 1141−1151  doi: 10.1021/ar900035f

    9. [9]

      Qiu, L. Y.; Bae, Y. H. Polymer architecture and drug delivery. Pharm. Res. 2006, 23(1), 1−30  doi: 10.1007/s11095-005-9046-2

    10. [10]

      Murakami, Y.; Tabata, Y.; Ikada, Y. Tumor accumulation of poly (ethylene glycol) with different molecular weights after intravenous injection. Drug Deliver. 1997, 4(1), 23−31  doi: 10.3109/10717549709033184

    11. [11]

      Tabata, Y.; Murakami, Y.; Ikada, Y. Tumor accumulation of poly (vinyl alcohol) of different sizes after intravenous injection. J. Control. Release 1998, 50(1-3), 123−133  doi: 10.1016/S0168-3659(97)00129-6

    12. [12]

      Lim, J.; Guo, Y.; Rostollan, C. L.; Stanfield, J.; Hsieh, J. T.; Sun, X.; Simanek, E. E. The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers. Mol. Pharmaceutics 2008, 5(4), 540−547  doi: 10.1021/mp8000292

    13. [13]

      Venturoli, D.; Rippe, B. Ficoll and dextran versus globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal Physiol. 2005, 288(4), F605−F613  doi: 10.1152/ajprenal.00171.2004

    14. [14]

      Asgeirsson, D.; Venturoli, D.; Fries, E.; Rippe, B.; Rippe, C. Glomerular sieving of three neutral polysaccharides, polyethylene oxide and bikunin in rat. Effects of molecular size and conformation. Acta Physiol. 2007, 191(3), 237−246

    15. [15]

      Gillies, E. R.; Dy, E.; Fréchet, J. M.; Szoka, F. C. Biological evaluation of polyester dendrimer: poly(ethylene oxide) " bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharmaceutics 2005, 2(2), 129−138  doi: 10.1021/mp049886u

    16. [16]

      Lee, C. C.; Gillies, E. R.; Fox, M. E.; Guillaudeu, S. J.; Fréchet, J. M.; Dy, E. E.; Szoka, F. C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(45), 16649−16654  doi: 10.1073/pnas.0607705103

    17. [17]

      Li, Y.; Xu, X.; Zhang, X.; Li, Y.; Zhang, Z.; Gu, Z. Tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with metabolic blockade surmount chemotherapy resistance. ACS Nano 2017, 11(1), 416−429  doi: 10.1021/acsnano.6b06161

    18. [18]

      Liu, C.; Chen, Y. X.; Wang, J. F.; Luo, X.; Huang, Y. D.; Xu, J. L.; Yan, G. P.; Chen, S.; Zhang, X, Z. A multi-functional drug delivery system based on dendritic peptide for tumor nuclear accurate targeting therapy. Acta Polymerica Sinica (in Chinese) 2048, (6), 682−691  doi: 10.11777/j.issn1000-3304.2017.17335

    19. [19]

      Lee, C. C.; MacKay, J. A.; Frechet, J. M. J.; Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 2005, 23(12), 1517−1526  doi: 10.1038/nbt1171

    20. [20]

      Allmeroth, M.; Moderegger, D.; Gündel, D.; Buchholz, H. G.; Mohr, N.; Koynov, K.; Rösch, F.; Thews, O.; Zentel, R. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J. Control. Release 2013, 172(1), 77−85  doi: 10.1016/j.jconrel.2013.07.027

    21. [21]

      Allmeroth, M.; Moderegger, D.; Gündel, D.; Koynov, K.; Buchholz, H. G.; Mohr, K.; Rösch, F.; Zentel, R.; Thews, O. HPMA-LMA copolymer drug carriers in oncology: an in vivo PET study to assess the tumor line-specific polymer uptake and body distribution. Biomacromolecules 2013, 14(9), 3091−3101  doi: 10.1021/bm400709z

    22. [22]

      Müllner, M.; Dodds, S. J.; Nguyen, T. H.; Senyschyn, D.; Porter, C. J.; Boyd, B. J.; Caruso, F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano 2015, 9(2), 1294−1304  doi: 10.1021/nn505125f

    23. [23]

      Irvine, D.; Mayes, A.; Griffith-Cima, L. Self-consistent field analysis of grafted star polymers. Macromolecules 1996, 29(18), 6037−6043  doi: 10.1021/ma951903t

    24. [24]

      Li, X.; Ji, J.; Wang, X.; Wang, Y.; Shen, J. Stability and drug loading of spontaneous vesicles of comb‐like PEG derivates. Macromol. Rapid Commun. 2007, 28(5), 660−665  doi: 10.1002/(ISSN)1521-3927

    25. [25]

      Chen, C. J.; Liu, G. Y.; Shi, Y. T.; Zhu, C. S.; Pang, S. P.; Liu, X. S.; Ji, J. Biocompatible micelles based on comb‐like PEG derivates: formation, characterization, and photo‐responsiveness. Macromol. Rapid Commun. 2011, 32(14), 1077−1081  doi: 10.1002/marc.v32.14

    26. [26]

      Talelli, M.; Rijcken, C.; van Nostrum, C.; Storm, G.; Hennink, W. Micelles based on HPMA copolymers. Adv. Drug Deliver. Rev. 2010, 62(2), 231−239  doi: 10.1016/j.addr.2009.11.029

    27. [27]

      Kopeček, J.; Kopečková, P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliver. Rev. 2010, 62(2), 122−149  doi: 10.1016/j.addr.2009.10.004

    28. [28]

      Kopeček, J.; Kopečková, P.; Minko, T.; Lu, Z. R. HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur. J. Pharm. Biopharm. 2000, 50(1), 61−81  doi: 10.1016/S0939-6411(00)00075-8

    29. [29]

      Šírová, M.; Strohalm, J.; Chytil, P.; Lidický, O.; Tomala, J.; Říhová, B.; Etrych, T. The structure of polymer carriers controls the efficacy of the experimental combination treatment of tumors with HPMA copolymer conjugates carrying doxorubicin and docetaxel. J. Control. Release 2017, 246, 1−11  doi: 10.1016/j.jconrel.2016.12.004

    30. [30]

      Etrych, T.; Kovar, L.; Strohalm, J.; Chytil, P.; Rihova, B.; Ulbrich, K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J. Control. Release 2011, 154(3), 241−248  doi: 10.1016/j.jconrel.2011.06.015

    31. [31]

      Tomalova, B.; Sirova, M.; Rossmann, P.; Pola, R.; Strohalm, J.; Chytil, P.; Cerny, V.; Tomala, J.; Kabesova, M.; Rihova, B.; Ulbrich, K.; Etrych, T.; Kovar, M. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. J. Control. Release 2016, 223, 1−10  doi: 10.1016/j.jconrel.2015.12.023

    32. [32]

      Etrych, T.; Chytil, P.; Mrkvan, T.; Šírová, M.; Říhová, B.; Ulbrich, K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Control. Release 2008, 132(3), 184−192  doi: 10.1016/j.jconrel.2008.04.017

    33. [33]

      Wang, D. Synthesis of starlike N-(2-hydroxypropyl)-methacrylamide copolymers: Potential drug carriers. Biomacromolecules 2000, 1(3), 313−319  doi: 10.1021/bm0000236

    34. [34]

      Etrych, T.; Subr, V.; Strohalm, J.; Sirova, M.; Rihova, B.; Ulbrich, K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release 2012, 164(3), 346−354  doi: 10.1016/j.jconrel.2012.06.029

    35. [35]

      Fox, M. E.; Szoka, F. C.; Frechet, J. M. J. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 2009, 42(8), 1141−1151  doi: 10.1021/ar900035f

    36. [36]

      Yu, Q.; Zhang, J.; Zhang, G.; Gan, Z. Synthesis and functions of well‐defined polymer‐drug conjugates as efficient nanocarriers for intravesical chemotherapy of bladder cancer. Macromol. Biosci. 2015, 15(4), 509−520  doi: 10.1002/mabi.v15.4

    37. [37]

      Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 2001, 34(7), 2248−2256

    38. [38]

      Stals, P. J. M.; Li, Y.; Burdyńska, J.; Nicolaÿ, R.; Nese, A.; Palmans, A. R. A.; Meijer, E. W.; Matyjaszewski, K.; Sheiko, S. S. How far can we push polymer architectures? J. Am. Chem. Soc. 2013, 135(31), 11421−11424  doi: 10.1021/ja400890v

    39. [39]

      Shen, T.; Xu, X.; Guo, L.; Tang, H.; Diao, T.; Gan, Z.; Zhang, G.; Yu, Q. Efficient tumor accumulation, penetration and tumor growth inhibition achieved by polymer therapeutics: The effect of polymer architectures. Biomacromolecules 2017, 18(1), 217−230  doi: 10.1021/acs.biomac.6b01533

    40. [40]

      Seymour, L. W.; Ulbrich, K.; Strohalm, J.; Kopecek, J.; Duncan, R. The pharmacokinetics of polymer-bound adriamycin. Biochem. Pharmacol. 1990, 39(6), 1125−1131  doi: 10.1016/0006-2952(90)90293-T

    41. [41]

      Hedden, R. C.; Bauer, B. J.; Smith, A. P.; Grohn, F.; Amis, E. Templating of inorganic nanoparticles by PAMAM/PEG dendrimer-star polymers. Polymer 2002, 43(20), 5473−5481  doi: 10.1016/S0032-3861(02)00428-7

    42. [42]

      Hedden, R. C.; Bauer, B. J. Structure and dimensions of PAMAM/PEG dendrimer-star polymers. Macromolecules 2003, 36(6), 1829−1835  doi: 10.1021/ma025752n

    43. [43]

      Chen, C. J.; Liu, G. Y.; Shi, Y. T.; Zhu, C. S.; Pang, S. P.; Liu, X. S.; Ji, J. Biocompatible micelles based on comb-like PEG derivates: Formation, characterization, and photo-responsiveness. Macromol. Rapid Commun. 2011, 32(14), 1077−1081  doi: 10.1002/marc.v32.14

    44. [44]

      Bo, G.; Wesslén, B.; Wessléen, K. B. Amphiphilic comb-shaped polymers from poly(ethylene glycol) macromonomers. J. Polym. Sci., Part A: Polym. Chem. 1992, 30(9), 1799−1808  doi: 10.1002/pola.1992.080300903

    45. [45]

      Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1(4), 276−288  doi: 10.1038/nchem.257

    46. [46]

      Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 2008, 33(7), 759−785  doi: 10.1016/j.progpolymsci.2008.05.001

    47. [47]

      Plamper, F. A.; Schmalz, A.; Penott-Chang, E.; Drechsler, M.; Jusufi, A.; Ballauff, M.; Müller, A. H. E. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer 1995, 31A(5), 766−770

    48. [48]

      Seymour, L. W.; Miyamoto, Y.; Maeda, H.; Brereton, M.; Strohalm, J.; Ulbrich, K.; Duncan, R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer 1995, 31(5), 766−770  doi: 10.1016/0959-8049(94)00514-6

    49. [49]

      Yu, Q.; Wei, Z.; Shi, J.; Guan, S.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. Polymer–doxorubicin conjugate micelles based on poly (ethylene glycol) and poly (N-(2-hydroxypropyl) methacrylamide): Effect of negative charge and molecular weight on biodistribution and blood clearance. Biomacromolecules 2015, 16(9), 2645−2655  doi: 10.1021/acs.biomac.5b00460

    50. [50]

      Neugebauer, D.; Sumerlin, B. S.; Matyjaszewski, K.; Goodhart, B.; Sheiko, S. S. How dense are cylindrical brushes grafted from a multifunctional macroinitiator? Polymer 2004, 45(24), 8173−8179  doi: 10.1016/j.polymer.2004.09.069

    51. [51]

      Hu, Y.; Xie, J.; Tong, Y. W.; Wang, C. H. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J. Control. Release 2007, 118(1), 7−17  doi: 10.1016/j.jconrel.2006.11.028

    52. [52]

      Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size‐dependent endocytosis of nanoparticles. Adv. Mater. 2009, 21(4), 419−424  doi: 10.1002/adma.v21:4

    53. [53]

      Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf., B 2000, 18(3), 301−313

    54. [54]

      Liu, J.; Bauer, H.; Callahan, J.; Kopečková, P.; Pan, H.; Kopeček, J. Endocytic uptake of a large array of HPMA copolymers: Elucidation into the dependence on the physicochemical characteristics. J. Control. Release 2010, 143(1), 71−79  doi: 10.1016/j.jconrel.2009.12.022

    55. [55]

      Swift, L. P.; Rephaeli, A.; Nudelman, A.; Phillips, D. R.; Cutts, S. M. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res. 2006, 66(9), 4863−4871  doi: 10.1158/0008-5472.CAN-05-3410

    56. [56]

      Lin, W.; Zhang, X.; Qian, L.; Yao, N.; Pan, Y.; Zhang, L. Doxorubicin-loaded unimolecular micelle-stabilized gold nanoparticles as a theranostic nanoplatform for tumor-targeted chemotherapy and computed tomography imaging. Biomacromolecules 2017, 18(12), 3869−3880  doi: 10.1021/acs.biomac.7b00810

    57. [57]

      Gratton, S. E.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(33), 11613−11618  doi: 10.1073/pnas.0801763105

    58. [58]

      Meng, H.; Yang, S.; Li, Z. X.; Xia, T.; Chen, J.; Ji, Z. X.; Zhang, H. Y.; Wang, X.; Lin, S. J.; Huang, C.; Zhou, Z. H.; Zink, J. I.; Nel, A. E. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 2011, 5(6), 4434−4447  doi: 10.1021/nn103344k

    59. [59]

      Hu, X.; Hu, J.; Tian, J.; Ge, Z.; Zhang, G.; Luo, K.; Liu, S. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 2013, 135(46), 17617−17629  doi: 10.1021/ja409686x

    60. [60]

      Hu, X.; Liu, G.; Li, Y.; Wang, X.; Liu, S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 2015, 137(1), 362−368  doi: 10.1021/ja5105848

    61. [61]

      French, A. P.; Mills, S.; Swarup, R.; Bennett, M. J.; Pridmore, T. P. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat. Protoc. 2008, 3(4), 619−628  doi: 10.1038/nprot.2008.31

    62. [62]

      Bolte, S.; Cordelieres, F. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224(3), 213−232  doi: 10.1111/jmi.2006.224.issue-3

    63. [63]

      Adler, J.; Parmryd, I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry Part A 2010, 77(8), 733−742

    64. [64]

      Mullner, M.; Dodds, S. J.; Nguyen, T. H.; Senyschyn, D.; Porter, C. J. H.; Boyd, B. J.; Caruso, F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano 2015, 9(2), 1294−1304  doi: 10.1021/nn505125f

  • 加载中
    1. [1]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    2. [2]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    3. [3]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    4. [4]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    5. [5]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    9. [9]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    10. [10]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    11. [11]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    12. [12]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    13. [13]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    14. [14]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    15. [15]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    18. [18]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    19. [19]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    20. [20]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

Metrics
  • PDF Downloads(0)
  • Abstract views(816)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return