Citation: Yi-Jie Zou, Shi-Sheng He, Jian-Zhong Du. ε-Poly(L-lysine)-based Hydrogels with Fast-acting and Prolonged Antibacterial Activities[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1239-1250. doi: 10.1007/s10118-018-2156-1 shu

ε-Poly(L-lysine)-based Hydrogels with Fast-acting and Prolonged Antibacterial Activities

  • Corresponding author: Jian-Zhong Du, jzdu@tongji.edu.cn
  • Received Date: 1 May 2018
    Revised Date: 4 May 2018
    Accepted Date: 8 May 2018
    Available Online: 11 June 2018

  • Bacterial infections and the associated morbidity and mortality due to bacterial pathogens in wounds and medical implants have been increasing as most of current coatings cannot fulfill all the requirements including excellent intrinsically antibacterial activity, low cytotoxicity, and favorable physical properties. Herein, we present a kind of antibacterial hydrogel based on ε-poly(L-lysine) (EPL) grafted carboxymethyl chitosan (CMC-g-EPL) as the inherently antibacterial matrix and the surplus EPL as highly efficient antimicrobial agent. Such hydrogels possess tunable swelling abilities with water absorption percentages of 800%–2000% and modulus varying from 10 kPa to 100 kPa, and exhibit two-stage excellent antibacterial behavior. First, the free EPL can be released from the hydrogel network for quick and highly efficient bacteria killing with 99.99% of efficacy; second, the grafted EPL endows hydrogel matrix with prolonged intrinsically antibacterial activity, especially when most of free EPL is released from the hydrogel. Overall, we provide a new insight for preparing highly effective antibacterial hydrogels.
  • 加载中
    1. [1]

      Il Kim, S. Bacterial infection after liver transplantation. World J. Gastroenterol. 2014, 20(20), 6211−6220  doi: 10.3748/wjg.v20.i20.6211

    2. [2]

      Yarden-Bilavsky, H.; Ashkenazi-Hoffnung, L.; Livni, G.; Amir, J.; Bilavsky, E. Month-by-month age analysis of the risk for serious bacterial infections in febrile infants with bronchiolitis. Clin. Pediatr. 2011, 50(11), 1052−1056  doi: 10.1177/0009922811412949

    3. [3]

      Li, P.; Poon, Y. F.; Li, W. F.; Zhu, H. Y.; Yeap, S. H.; Cao, Y.; Qi, X. B.; Zhou, C. C.; Lamrani, M.; Beuerman, R. W.; Kang, E. T.; Mu, Y. G.; Li, C. M.; Chang, M. W.; Leong, S. S. J.; Chan-Park, M. B. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011, 10(2), 149−156  doi: 10.1038/nmat2915

    4. [4]

      Huang, Q. T.; Zou, Y. J.; Arno, M. C.; Chen, S.; Wang, T.; Gao, J. Y.; Dove, A. P.; Du, J. Z. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem. Soc. Rev. 2017, 46(20), 6255−6275  doi: 10.1039/C6CS00052E

    5. [5]

      Tran, N. Q.; Joung, Y. K.; Lih, E.; Park, K. D. In situ forming and Rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 2011, 12(8), 2872−2880  doi: 10.1021/bm200326g

    6. [6]

      Lu, Z. T.; Zhang, J. Q.; Yu, Z. G.; Liu, Q. Z.; Liu, K.; Li, M. F.; Wang, D. Hydrogel degradation triggered by pH for the smart release of antibiotics to combat bacterial infection. New J. Chem. 2017, 41(2), 432−436  doi: 10.1039/C6NJ03260E

    7. [7]

      Ghavaminejad, A.; Park, C. H.; Kim, C. S. In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 2016, 17(3), 1213−1223  doi: 10.1021/acs.biomac.6b00039

    8. [8]

      Song, T.; Xi, Y. J.; Du, J. Z. Antibacterial hydrogels incorporated with poly(glutamic acid)-based vesicles. Acta Polymerica Sininca (in Chinese) 2018, (1), 119−128

    9. [9]

      Wang, R.; Zhou, B.; Xu, D. L.; Xu, H.; Liang, L.; Feng, X. H.; Ouyang, P. K.; Chi, B. Antimicrobial and biocompatible epsilon-polylysine-gamma-poly(glutamic acid)-based hydrogel system for wound healing. J. Bioact. Compat. Polym. 2016, 31(3), 242−259  doi: 10.1177/0883911515610019

    10. [10]

      Shu, Y.; Hao, T.; Yao, F. L.; Qian, Y. F.; Wang, Y.; Yang, B. G.; Li, J. J.; Wang, C. Y. RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl. Mater. Interfaces 2015, 7(12), 6505−6517  doi: 10.1021/acsami.5b01234

    11. [11]

      Xu, W. J.; Qian, J. M.; Zhang, Y. P.; Suo, A. L.; Cui, N.; Wang, J. L.; Yao, Y.; Wang, H. J. A double-network poly(N-epsilon-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Acta Biomater. 2016, 33, 131−141  doi: 10.1016/j.actbio.2016.01.027

    12. [12]

      Cheng, C.; Zhang, X. L.; Meng, Y. B.; Zhang, Z. H.; Chen, J. D.; Zhang, Q. Q. Multiresponsive and biocompatible self-healing hydrogel: Its facile synthesis in water, characterization and properties. Soft Matter 2017, 13(16), 3003−3012  doi: 10.1039/C7SM00350A

    13. [13]

      Togo, Y.; Takahashi, K.; Saito, K.; Kiso, H.; Huang, B. Y.; Tsukamoto, H.; Hyon, S. H.; Bessho, K. Aldehyded dextran and epsilon-poly(L-lysine) hydrogel as nonviral gene carrier. Stem Cells Int. 2013, 634379

    14. [14]

      Unalan, I. U.; Ucar, K. D. A.; Arcan, I.; Korel, F.; Yemenicioglu, A. Antimicrobial potential of polylysine in edible films. Food Sci. Technol. Res. 2011, 17(4), 375−380  doi: 10.3136/fstr.17.375

    15. [15]

      Zhou, C. C.; Yuan, Y.; Zhou, P. Y.; Wang, F. Y. K.; Hong, Y. X.; Wang, N. S.; Xu, S. G.; Du, J. Z. Highly effective antibacterial vesicles based on peptide-mimetic alternating copolymers for bone repair. Biomacromolecules 2017, 18(12), 4154−4162  doi: 10.1021/acs.biomac.7b01209

    16. [16]

      Zhou, C. C.; Li, P.; Qi, X. B.; Sharif, A. R. M.; Poon, Y. F.; Cao, Y.; Chang, M. W.; Leong, S. S. J.; Chan-Park, M. B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials 2011, 32(11), 2704−2712  doi: 10.1016/j.biomaterials.2010.12.040

    17. [17]

      Gao, J. Y.; Wang, M. Z.; Wang, F. Y. K.; Du, J. Z. Synthesis and mechanism insight of a peptide-grafted hyperbranched polymer nanosheet with weak positive charges but excellent intrinsically antibacterial efficacy. Biomacromolecules 2016, 17(6), 2080−2086  doi: 10.1021/acs.biomac.6b00307

    18. [18]

      Lam, S. J.; O'Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 2016, 1(11), 16162  doi: 10.1038/nmicrobiol.2016.162

    19. [19]

      Papenfort, K.; Bassler, B. L. Quorum sensing signal-response systems in gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14(9), 576−588  doi: 10.1038/nrmicro.2016.89

    20. [20]

      Tong, X. M.; Yang, F. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties. Biomaterials 2014, 35(6), 1807−1815  doi: 10.1016/j.biomaterials.2013.11.064

    21. [21]

      Edwards, S. L.; Ulrich, D.; White, J. F.; Su, K.; Rosamilia, A.; Ramshaw, J. A. M.; Gargett, C. E.; Werkmeister, J. A. Temporal changes in the biomechanical properties of endometrial mesenchymal stem cell seeded scaffolds in a rat model. Acta Biomater. 2015, 13, 286−294  doi: 10.1016/j.actbio.2014.10.043

    22. [22]

      Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W.; Li, D.; Fan, C.; Lee, S. T. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 2010, 22(48), 5463−5467  doi: 10.1002/adma.v22.48

    23. [23]

      Wiegand, I.; Hilpert, K.; Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163−175  doi: 10.1038/nprot.2007.521

    24. [24]

      Dahl, T. A.; Midden, W. R.; Hartman, P. E. Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygen. J. Bacteriol. 1989, 171(4), 2188−2194  doi: 10.1128/jb.171.4.2188-2194.1989

    25. [25]

      Geng, X. D.; Yang, R. H.; Huang, J. Y.; Zhang, X.; Wang, X. Y. Evaluation antibacterial activity of quaternary-based chitin/chitosan derivatives in vitro. J. Food Sci. 2013, 78(1), M90−M97  doi: 10.1111/jfds.2013.78.issue-1

    26. [26]

      Sun, H.; Hong, Y. X.; Xi, Y. J.; Zou, Y. J.; Gao, J. Y.; Du, J. Z. Synthesis, self-assembly and biomedical applications of antimicrobial peptide-polymer conjugates. Biomacromolecules 2018, 10.1021/acs.biomac.1028b00208  doi: 10.1021/acs.biomac.1028b00208

    27. [27]

      Zheng, H.; Lu, J.; Chao, F.; Ying, Z.; Hui, B.; Zhang, X.; Xue, X.; Chen, Y.; Luo, X. Underlying mechanism of in vivo and in vitro activity of c-terminal-amidated thanatin against clinical isolates of extended-spectrum β-lactamase–producing Escherichia coli. J. Infect. Dis. 2011, 203(2), 273−282  doi: 10.1093/infdis/jiq029

    28. [28]

      Liu, Z. Q.; Wei, Z.; Zhu, X. L.; Huang, G. Y.; Xu, F.; Yang, J. H.; Osada, Y.; Zrinyi, M.; Li, J. H.; Chen, Y. M. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf., B 2015, 128, 140−148  doi: 10.1016/j.colsurfb.2015.02.005

    29. [29]

      Zhou, L.; Chen, M.; Guan, Y.; Zhang, Y. J. Multiple responsive hydrogel films based on dynamic schiff base linkages. Polym. Chem. 2014, 5(24), 7081−7089  doi: 10.1039/C4PY00868E

    30. [30]

      Dong, D. Y.; Li, J. J.; Cui, M.; Wang, J. M.; Zhou, Y. H.; Luo, L.; Wei, Y. F.; Ye, L.; Sun, H.; Yao, F. L. In situ "clickable" zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Appl. Mater. Interfaces 2016, 8(7), 4442−4455  doi: 10.1021/acsami.5b12141

    31. [31]

      Ishii-Mizuno, Y.; Umeki, Y.; Onuki, Y.; Watanabe, H.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Improved sustained release of antigen from immunostimulatory DNA hydrogel by electrostatic interaction with chitosan. Int. J. Pharm. 2017, 516(1-2), 392−400  doi: 10.1016/j.ijpharm.2016.11.048

    32. [32]

      Zhang, G. Z.; Ngai, T.; Deng, Y. H.; Wang, C. Y. An injectable hydrogel with excellent self-healing property based on quadruple hydrogen bonding. Macromol. Chem. Phys. 2016, 217(19), 2172−2181  doi: 10.1002/macp.v217.19

    33. [33]

      Su, E.; Okay, O. Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. Eur. Polym. J. 2017, 88, 191−204  doi: 10.1016/j.eurpolymj.2017.01.029

    34. [34]

      Sakamoto, J. M.; Gordon, T. R. Factors influencing infection of mechanical wounds by Fusarium circinatum on Monterey pines (pinus radiata). Plant Pathol. 2006, 55(1), 130−136  doi: 10.1111/ppa.2006.55.issue-1

    35. [35]

      Toda, H.; Yamamoto, M.; Uyama, H.; Tabata, Y. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture. Acta Biomater. 2016, 29, 215−227  doi: 10.1016/j.actbio.2015.10.036

  • 加载中
    1. [1]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    2. [2]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    3. [3]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    4. [4]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    5. [5]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    8. [8]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    9. [9]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    10. [10]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    11. [11]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    12. [12]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    13. [13]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    14. [14]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    15. [15]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    16. [16]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    17. [17]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

Metrics
  • PDF Downloads(0)
  • Abstract views(787)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return