Citation: Yan-Ling Xu, Ao-Ting Qu, Ru-Jiang Ma, Ang Li, Zhen-Kun Zhang, Zhi-Qiang Shang, Yao-Fang Zhang, Lu-Xia Bu, Ying-Li An. pH-responsive Micelles from a Blend of PEG-b-PLA and PLA-b-PDPA Block Copolymers: Core Protection Against Enzymatic Degradation[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1262-1268. doi: 10.1007/s10118-018-2149-0 shu

pH-responsive Micelles from a Blend of PEG-b-PLA and PLA-b-PDPA Block Copolymers: Core Protection Against Enzymatic Degradation

  • Corresponding author: Ying-Li An, anyingli@nankai.edu.cn
  • Received Date: 4 March 2018
    Revised Date: 25 April 2018
    Accepted Date: 16 May 2018
    Available Online: 14 June 2018

  • pH-responsive micelles with a biodegradable PLA core and a mixed PEG/PDPA shell were prepared by self-assembly of poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) and poly(2-(diisopropylamino)ethyl methacrylate)-b-poly(lactic acid) (PDPA-b-PLA). The micellization status with different pH and the enzyme degradation behavior were characterized by 1H-NMR spectroscopy, dynamic light scattering measurement and zeta potential test. The pH turning point of PDPA block was determined to be in the range of 5.5−7.0. While the pH was above 7.0, the PDPA block collapsed onto the PLA core and could protect the PLA core from invasion of enzyme, as a result, the micelle exhibited a resistance to the enzymatic degradation.
  • 加载中
    1. [1]

      Veeren, A.; Bhaw-Luximon, A.; Mukhopadhyay, D.; Jhurry, D. Mixed poly(vinyl pyrrolidone)-based drug-loaded nanomicelles shows enhanced efficacy against pancreatic cancer cell lines. Eur. J. Pharm. Sci. 2017, 102, 250−260  doi: 10.1016/j.ejps.2017.03.021

    2. [2]

      Claro, B.; Zhu, K.; Bagherifam, S.; Silva, S. G.; Griffiths, G.; Knudsen, K. D.; Marques, E. F.; Nyström, B. Phase behavior, microstructure and cytotoxicity in mixtures of a charged triblock copolymer and an ionic surfactant. Eur. Polym. J. 2016, 75, 461−473  doi: 10.1016/j.eurpolymj.2016.01.018

    3. [3]

      Tang, M.; Zheng, Q.; Tirelli, N.; Hu, P.; Tang, Q.; Gu, J.; He, Y. Dual thermo/oxidation-responsive block copolymers with self-assembly behaviour and synergistic release. React. Funct. Polym. 2017, 110, 55−61  doi: 10.1016/j.reactfunctpolym.2016.12.009

    4. [4]

      Balasubramanian, P. V.; Herranz-Blanco, B.; Almeida, P. V.; Hirvonen, J.; Santos, H. A. Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. Prog. Polym. Sci. 2016, 60, 51−85  doi: 10.1016/j.progpolymsci.2016.04.004

    5. [5]

      Zhou, L.; Yu, L.; Ding, M.; Li, J.; Tan, H.; Wang, Z.; Fu, Q. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules 2011, 44, 857−864  doi: 10.1021/ma102346a

    6. [6]

      Qi, X.; Ren, Y.; Wang, X. New advances in the biodegradation of poly(lactic) acid. Int. Biodeter. Biodegr. 2017, 117, 215−223  doi: 10.1016/j.ibiod.2017.01.010

    7. [7]

      Shi, Y.; Sun, F.; Wang, D.; Zhang, R.; Dou, C.; Liu, W.; Sun, K.; Li, Y. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle. J. Nanopart. Res. 2013, 15, 2002−2011  doi: 10.1007/s11051-013-2002-x

    8. [8]

      Garofalo, C.; Capuano, G.; Sottile, R.; Tallerico, R.; Adami, R.; Reverchon, E.; Carbone, E.; Izzo, L.; Pappalardo, D. Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake. Biomacromolecules 2014, 15, 403−415  doi: 10.1021/bm401812r

    9. [9]

      Kumar, S.; Maiti, P. Controlled biodegradation of polymers using nanoparticles and its application. RSC Adv. 2016, 6, 67449−67480  doi: 10.1039/C6RA08641A

    10. [10]

      Wang, Z.; Yu, L.; Ding, M.; Tan, H.; Li, J.; Fu, Q. Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysine diisocyanate. Polym. Chem. 2011, 2, 601−607  doi: 10.1039/C0PY00235F

    11. [11]

      Marschutz, M. K.; Bernkop-Schnurch, A. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials 2000, 21, 1499−1507  doi: 10.1016/S0142-9612(00)00039-9

    12. [12]

      Guo, P.; Song, S.; Li, Z.; Tian, Y.; Zheng, J.; Yang, X.; Pan, W. In vitro and in vivo evaluation of APRPG-modified angiogenic vessel targeting micelles for anticancer therapy. Int. J. Pharmaceut. 2015, 486, 356−366  doi: 10.1016/j.ijpharm.2015.03.067

    13. [13]

      Tangsangasaksri, M.; Takemoto, H.; Naito, M.; Maeda, Y.; Sueyoshi, D. siRNA-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 2016, 17, 246−255  doi: 10.1021/acs.biomac.5b01334

    14. [14]

      Guthi, J. S.; Yang, S. G.; Huang, G.; Li, S.; Khemtong, C.; Kessinger, C. W.; Peyton, M.; Minna, J. D.; Brown, K. C.; Gao, J. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharmaceut. 2010, 7, 32−40  doi: 10.1021/mp9001393

    15. [15]

      Moretton, M. A.; Bernabeu, E.; Grotz, E.; Gonzalez, L.; Zubillaga, M.; Chiappetta, D. A. A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells. Eur. J. Pharm. Biopharm. 2017, 114, 305−316  doi: 10.1016/j.ejpb.2017.02.005

    16. [16]

      Elsabahy, M.; Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545−2561  doi: 10.1039/c2cs15327k

    17. [17]

      Xu, Y.; Ma, R.; Zhang, Z.; He, H.; Wang, Y.; Qu, A.; An, Y.; Zhu, X. X.; Shi, L. Complex micelles with a responsive shell for controlling of enzymatic degradation. Polymer 2012, 53, 3559−3565  doi: 10.1016/j.polymer.2012.05.064

    18. [18]

      Hu, J.; Liu, G.; Wang, C.; Liu, T.; Zhang, G.; Liu, S. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers. Biomacromolecules 2014, 15, 4293−4301  doi: 10.1021/bm501296d

    19. [19]

      FitzGerald, P. A.; Gupta, S.; Wood, K.; Perrier, S.; Warr, G. G. Temperature- and pH-responsive micelles with collapsible poly(N-isopropylacrylamide) headgroups. Langmuir 2014, 30, 7986−7992  doi: 10.1021/la501861t

    20. [20]

      Guo, X.; Shi, C.; Yang, G.; Wang, J.; Cai, Z.; Zhou, S. Dual-responsive polymer micelles for target-cell-specific anticancer drug delivery. Chem. Mater. 2014, 26, 4405−4418  doi: 10.1021/cm5012718

    21. [21]

      Gao, W.; Chan, J. M.; Farokhzad, O. C. pH-responsive nanoparticles for drug delivery. Mol. Pharmaceut. 2010, 7, 1913−1920  doi: 10.1021/mp100253e

    22. [22]

      Dai, Y.; Xu, C.; Sun, X.; Chen, X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017, 46, 3830−3852  doi: 10.1039/C6CS00592F

    23. [23]

      Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457−1501  doi: 10.1039/C5CS00798D

    24. [24]

      Hales, M.; Barner-Kowollik, C.; Davis, T. P.; Stenzel, M. H. Shell-cross-linked vesicles synthesized from block copolymers of poly(D,L-lactide) and poly(N-isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir 2004, 20, 10809−10817  doi: 10.1021/la0484016

    25. [25]

      Wu, C.; Ma, R.; He, H.; Zhao, L.; Gao, H.; An, Y.; Shi, L. Fabrication of complex micelles with tunable shell for application in controlled drug release. Macromol. Biosci. 2009, 9, 1185−1193  doi: 10.1002/mabi.v9:12

    26. [26]

      Taktak, F. F.; Bütün, V. Synthesis and physical gels of pH- and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies. Polymer 2010, 51, 3618−3626  doi: 10.1016/j.polymer.2010.06.010

    27. [27]

      Li, Y. M.; Yu, H. S.; Qian, Y. F.; Hu, J. M.; Liu, S. Y. Amphiphilic star copolymer-based bimodal fluorogenic/magnetic resonance probes for concomitant bacteria detection and inhibition. Adv. Mater. 2014, 26, 6734−6741  doi: 10.1002/adma.v26.39

    28. [28]

      Heald, C. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir 2002, 18, 3669−3675  doi: 10.1021/la011393y

    29. [29]

      Gan, Z.; Jim, T. F.; Li, M.; Yuer, Z.; Wang, S.; Wu, C. Enzymatic biodegradation of Poly(ethylene oxide-b-ε-caprolactone) diblock copolymer and its potential biomedical applications. Macromolecules 1999, 32, 590−594  doi: 10.1021/ma981121a

    30. [30]

      Jiang, Z.; Zhu, Z.; Liu, C.; Hu, Y.; Jiang, X. Non-enzymatic and enzymatic degradation of poly(ethylene glycol)-b-poly(ε-caprolactone) diblock copolymer micelles in aqueous solution. Polymer 2008, 49, 5513−5519  doi: 10.1016/j.polymer.2008.09.055

  • 加载中
    1. [1]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    2. [2]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    3. [3]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    4. [4]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    5. [5]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    6. [6]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    7. [7]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    8. [8]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    9. [9]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    10. [10]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    11. [11]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    12. [12]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    13. [13]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    14. [14]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    15. [15]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    16. [16]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    17. [17]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    18. [18]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    19. [19]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    20. [20]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

Metrics
  • PDF Downloads(0)
  • Abstract views(782)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return