Citation: Qandeel Fatima Gillani, Faiz Ahmad, M.I. Abdul Mutalib, Puteri S.M. Megat-Yusoff, Sami Ullah. Effects of Halloysite Nanotube Reinforcement in Expandable Graphite Based Intumescent Fire Retardant Coatings Developed Using Hybrid Epoxy Binder System[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1286-1296. doi: 10.1007/s10118-018-2148-1 shu

Effects of Halloysite Nanotube Reinforcement in Expandable Graphite Based Intumescent Fire Retardant Coatings Developed Using Hybrid Epoxy Binder System

  • Corresponding author: Faiz Ahmad, faizahmad@utp.edu.my
  • Received Date: 7 February 2018
    Revised Date: 10 April 2018
    Accepted Date: 1 May 2018
    Available Online: 14 June 2018

  • In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy system were investigated. Intumescent coating formulations were developed by incorporating different weight percentages of HNTs and PDMS in basic intumescent ingredients (ammonium polyphosphate/melamine/boric  acid/expandable  graphite, APP/MEL/BA/EG). The performance of intumescent formulations was investigated by furnace fire test, Bunsen burner fire test, field emission electron microscopy (FESEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared analysis (FTIR). The Bunsen burner fire test results indicated that the fire performance of HNTs and PDMS reinforced intumescent formulation has improved due to the development of silicate network over the char residue. Improved expansion in char residue was also noticed in the formulation, SH(3), due to the minimum decomposition of char carbon. FESEM and TEM results validated the development of silicate network over char layer of coating formulations. A considerable mass loss difference was noticed during thermal gravimetric analysis (TGA) of intumescent coating formulations. Reference formulation, SH(0) with no filler, degraded at 300 °C and lost 50% of its total mass but SH(3), due to synergistic effects between PDMS and HNTs, degraded above 400 °C and showed the maximum thermal stability. XRD analysis showed the development of thermally stable compound mulltie, due to the synergism of HNTs and siloxane during intumescent reactions, which enhanced fire performance. FTIR analysis showed the presence of incorporated siloxane and silicates bonds in char residue, which endorsed the toughness of intumescent char layer produced. Moreover, the synergistic effect of HNTs, PDMS, and other basic intumescent ingredients enhanced the polymer cross-linking in binder system and improved fire resistive performance of coatings.
  • 加载中
    1. [1]

      Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 2000, 28(1), 1−63

    2. [2]

      Pandey, J. K.; Reddy, K. R.; Kumar, A. P.; Singh, R. An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 2005, 88(2), 234−250  doi: 10.1016/j.polymdegradstab.2004.09.013

    3. [3]

      Kiliaris, P.; Papaspyrides, C. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 2010, 35(7), 902−958  doi: 10.1016/j.progpolymsci.2010.03.001

    4. [4]

      Pavlidou, S.; Papaspyrides, C. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33(12), 1119−1198  doi: 10.1016/j.progpolymsci.2008.07.008

    5. [5]

      Lecouvet, B.; Gutierrez, J.; Sclavons, M.; Bailly, C. Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym. Degrad. Stab. 2011, 96(2), 226−235  doi: 10.1016/j.polymdegradstab.2010.11.006

    6. [6]

      Prashantha, K.; Schmitt, H.; Lacrampe, M.; Krawczak, P. Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos. Sci. Technol. 2011, 71(16), 1859−1866  doi: 10.1016/j.compscitech.2011.08.019

    7. [7]

      Murariu, M.; Dechief, A. L.; Paint, Y.; Peeterbroeck, S.; Bonnaud, L.; Dubois, P. Polylactide (PLA)-halloysite nanocomposites: production, morphology and key-properties. J. Polym. Environ. 2012, 20(4), 932−943  doi: 10.1007/s10924-012-0488-4

    8. [8]

      Prashantha, K.; Lecouvet, B.; Sclavons, M.; Lacrampe, M. F.; Krawczak, P. Poly (lactic acid)/halloysite nanotubes nanocomposites: structure, thermal, and mechanical properties as a function of halloysite treatment. J. Appl. Polym. Sci. 2013, 128(3), 1895−1903

    9. [9]

      Singh, B. Why does halloysite roll?--A new model. Clays Clay Miner. 1996, 44(2), 191−196  doi: 10.1346/CCMN

    10. [10]

      Frost, R.; Shurvell, H. Raman microprobe spectroscopy of halloysite. Clays Clay Miner. 1997, 45(1), 68−72  doi: 10.1346/CCMN

    11. [11]

      Lecouvet, B.; Sclavons, M.; Bourbigot, S.; Bailly, C. Towards scalable production of polyamide 12/halloysite nanocomposites via water‐assisted extrusion: mechanical modeling, thermal and fire properties. Polym. Adv. Technol. 2014, 25(2), 137−151  doi: 10.1002/pat.v25.2

    12. [12]

      Lecouvet, B.; Sclavons, M.; Bourbigot, S.; Devaux, J.; Bailly, C. Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer 2011, 52(19), 4284−4295  doi: 10.1016/j.polymer.2011.07.021

    13. [13]

      Marney, D.; Russell, L.; Wu, D.; Nguyen, T.; Cramm, D.; Rigopoulos, N.; Wright, N.; Greaves, M. The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym. Degrad. Stab. 2008, 93(10), 1971−1978  doi: 10.1016/j.polymdegradstab.2008.06.018

    14. [14]

      Lecouvet, B.; Sclavons, M.; Bourbigot, S.; Bailly, C. Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polym. Degrad. Stab. 2013, 98(10), 1993−2004  doi: 10.1016/j.polymdegradstab.2013.07.013

    15. [15]

      Li, H.; Yuan, J.; Qian, H.; Wu, L. Synthesis and properties of SiO2/P(MMA-BA) core-shell structural latex with siloxanes. Prog. Org. Coat. 2016, 97, 65−73  doi: 10.1016/j.porgcoat.2016.03.027

    16. [16]

      Ahmad, S.; Ashraf, S.; Sharmin, E.; Mohomad, A.; Alam, M. Synthesis, formulation, and characterization of siloxane‐modified epoxy‐based anticorrosive paints. J. Appl. Polym. Sci. 2006, 100(6), 4981−4991  doi: 10.1002/(ISSN)1097-4628

    17. [17]

      Cardelli, A.; Ruggeri, G.; Calderisi, M.; Lednev, O.; Cardelli, C.; Tombari, E. Effects of poly (dimethylsiloxane) and inorganic fillers in halogen free flame retardant poly (ethylene-co-vinyl acetate) compound: A chemometric approach. Polym. Degrad. Stab. 2012, 97(12), 2536−2544  doi: 10.1016/j.polymdegradstab.2012.02.018

    18. [18]

      Murias, P.; Maciejewski, H.; Galina, H. Epoxy resins modified with reactive low molecular weight siloxanes. Eur. Polym. J. 2012, 48(4), 769−773  doi: 10.1016/j.eurpolymj.2012.01.009

    19. [19]

      Sung, P. H.; Lin, C. Y. Polysiloxane modified epoxy polymer networks—I. Graft interpenetrating polymeric networks. Eur. Polym. J. 1997, 33(6), 903−906

    20. [20]

      Lecouvet, B.; Sclavons, M.; Bailly, C.; Bourbigot, S. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym. Degrad. Stab. 2013, 98(11), 2268−2281  doi: 10.1016/j.polymdegradstab.2013.08.024

    21. [21]

      Jimenez, M.; Duquesne, S.; Bourbigot, S. Multiscale experimental approach for developing high-performance intumescent coatings. Ind. Eng. Chem. Res. 2006, 45(13), 4500−4508  doi: 10.1021/ie060040x

    22. [22]

      Connell, J. E.; Metcalfe, E.; Thomas, M. J. K. Silicate-siloxane fire retardant composites. Polym. Int. 2000, 49(10), 1092−1094  doi: 10.1002/(ISSN)1097-0126

    23. [23]

      Han, Z.; Fina, A.; Camino, G. Chapter 12 - Organosilicon compounds as polymer fire retardants. in "Polymer Green Flame Retardants". ed. by Constantine Papaspyrides and Pantelis Kiliaris. Elsevier, 2014, 389-418.

    24. [24]

      Ullah, S.; Ahmad, F. Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating. Polym. Degrad. Stab. 2014, 103, 49−62  doi: 10.1016/j.polymdegradstab.2014.02.016

    25. [25]

      Bodzay, B.; Bocz, K.; Bárkai, Z.; Marosi, G. Influence of rheological additives on char formation and fire resistance of intumescent coatings. Polym. Degrad. Stab. 2011, 96(3), 355−362  doi: 10.1016/j.polymdegradstab.2010.03.022

    26. [26]

      Jimenez, M.; Duquesne, S.; Bourbigot, S. Characterization of the performance of an intumescent fire protective coating. Surf. Coat. Technol. 2006, 201(3-4), 979−987  doi: 10.1016/j.surfcoat.2006.01.026

    27. [27]

      Yeh, J. M.; Huang, H. Y.; Chen, C. L.; Su, W. F.; Yu, Y. H. Siloxane-modified epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf. Coat. Technol. 2006, 200(8), 2753−2763  doi: 10.1016/j.surfcoat.2004.11.008

    28. [28]

      Zhu, F. L.; Xin, Q.; Feng, Q. Q.; Liu, R. T.; Li, K. J. Influence of nano-silica on flame resistance behavior of intumescent flame retardant cellulosic textiles: Remarkable synergistic effect. Surf. Coat. Technol. 2016, 294, 90−94  doi: 10.1016/j.surfcoat.2016.03.059

    29. [29]

      Ullah, S.; Ahmad, F.; Shariff, A. M.; Raza, M. R.; Masset, P. J. The role of multi-wall carbon nanotubes in char strength of epoxy based intumescent fire retardant coating. J. Anal. Appl. Pyrolysis. 2017, 124, 149−160  doi: 10.1016/j.jaap.2017.02.011

    30. [30]

      Ullah, S.; Ahmad, F.; Shariff, A. M.; Bustam, M. A. Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate. Polym. Degrad. Stab. 2014, 110, 91−103  doi: 10.1016/j.polymdegradstab.2014.08.017

    31. [31]

      Gu, J. W.; Zhang, G. C.; Dong, S. L.; Zhang, Q. Y.; Kong, J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 2007, 201(18), 7835−7841  doi: 10.1016/j.surfcoat.2007.03.020

    32. [32]

      Shi, Y.; Wang, G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl. Surf. Sci. 2016, 385, 453−463  doi: 10.1016/j.apsusc.2016.05.107

    33. [33]

      Hazwani Dzulkafli, H.; Ahmad, F.; Ullah, S.; Hussain, P.; Mamat, O.; Megat-Yusoff, P. S. M. Effects of talc on fire retarding, thermal degradation and water resistance of intumescent coating. Appl. Clay Sci. 2017, 146(Supplement C), 350−361

    34. [34]

      Gardelle, B.; Duquesne, S.; Vandereecken, P.; Bellayer, S.; Bourbigot, S. Resistance to fire of intumescent silicone based coating: The role of organoclay. Prog. Org. Coat. 2013, 76(11), 1633−1641  doi: 10.1016/j.porgcoat.2013.07.011

    35. [35]

      Liu, M.; Guo, B.; Du, M.; Cai, X.; Jia, D. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 2007, 18(45), 455703  doi: 10.1088/0957-4484/18/45/455703

    36. [36]

      Zhao, J.; Deng, C. L.; Du, S. L.; Chen, L.; Deng, C.; Wang, Y. Z. Synergistic flame‐retardant effect of halloysite nanotubes on intumescent flame retardant in LDPE. J. Appl. Polym. Sci. 2014, 131(7), 40065

    37. [37]

      Li, H.; Hu, Z.; Zhang, S.; Gu, X.; Wang, H.; Jiang, P.; Zhao, Q. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Prog. Org. Coat. 2015, 78, 318−324  doi: 10.1016/j.porgcoat.2014.08.003

    38. [38]

      Ullah, S.; Ahmad, F.; Megat-Yuso, P.; Binti Azmi, N. H. A study of bonding mechanism of expandable graphite based intumescent coating on steel substrate. J. Appl. Sci. 2011, 11, 1630−1635  doi: 10.3923/jas.2011.1630.1635

    39. [39]

      Ullah, S.; Ahmad, F.; Shariff, A. M.; Bustam, M. A.; Gonfa, G.; Gillani, Q. F. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. Prog. Org. Coat. 2017, 109, 70−82  doi: 10.1016/j.porgcoat.2017.04.017

    40. [40]

      Ullah, S.; Ahmad, F.; Shariff, A.; Bustam, M. Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate. Polym. Degrad. Stab. 2014, 110, 91−103  doi: 10.1016/j.polymdegradstab.2014.08.017

    41. [41]

      Ahmad, F.; Ullah, S.; Mohammad, W. F.; Shariff, M. F. Thermal performance of alumina filler reinforced intumescent fire retardant coating for structural application. IOP Conference Series: Materials Science and Engineering. 2014, 60(1), 012023

    42. [42]

      Fatima Gillani, Q.; Ahmad, F.; Mutalib, A.; Ibrahim, M.; Syahera, E. Thermal degradation and char morphology of HNTs reinforced epoxy based intumescent fire retardant coatings. Key Eng. Mater. 2016, 701, 83−88  doi: 10.4028/www.scientific.net/KEM.701

    43. [43]

      Kaur, J.; Ahmad, F.; Ullah, S.; Yusoff, P. S. M. M.; Ahmad, R. The role of bentonite clay on improvement in char adhesion of intumescent fire-retardant coating with steel substrate. Arab. J. Sci. Eng. 2017, 42(5), 2043−2053  doi: 10.1007/s13369-017-2423-4

    44. [44]

      Medvedev, E.; Komarevskaya, A. S. IR spectroscopic study of the phase composition of boric acid as a component of glass batch. Glass Ceram. 2007, 64(1-2), 42−46  doi: 10.1007/s10717-007-0010-y

    45. [45]

      Mahapatra, S. S.; Karak, N. s-Triazine containing flame retardant hyperbranched polyamines: synthesis, characterization and properties evaluation. Polym. Degrad. Stab. 2007, 92(6), 947−955  doi: 10.1016/j.polymdegradstab.2007.03.012

    46. [46]

      Puri, R. G.; Khanna, A. S. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel. Prog. Org. Coat. 2016, 92, 8−15  doi: 10.1016/j.porgcoat.2015.11.016

    47. [47]

      Feng, C.; Liang, M.; Chen, W.; Huang, J.; Liu, H. Flame retardancy and thermal degradation of intumescent flame retardant EVA composite with efficient charring agent. J. Anal. Appl. Pyrolysis 2015, 113, 266−273  doi: 10.1016/j.jaap.2015.01.021

    48. [48]

      Stavitski, E. Infrared spectroscopy on powder catalysts. in "In-situ characterization of heterogeneous catalysts", Eds. Rodriguez, J. A., Hanson, J. C., Chupas, P. J. John Wiley & Sons 2013, 241−265  doi: 10.1002/9781118355923.ch9

  • 加载中
    1. [1]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    2. [2]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    3. [3]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    4. [4]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    5. [5]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    6. [6]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    7. [7]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    8. [8]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    9. [9]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    10. [10]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    11. [11]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    12. [12]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    17. [17]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    18. [18]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    19. [19]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    20. [20]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

Metrics
  • PDF Downloads(0)
  • Abstract views(781)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return