Citation: Wei Zhang, Bin-Bo Jiang, Jian Ye, Zu-Wei Liao, Zheng-Liang Huang, Jing-Dai Wang, Yong-Rong Yang. Preparation of Aryloxy-aluminoxanes and Their Use as Activators in the Bis(imino)pyridyl Iron-catalyzed Oligomerization of Ethylene[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1207-1216. doi: 10.1007/s10118-018-2146-3 shu

Preparation of Aryloxy-aluminoxanes and Their Use as Activators in the Bis(imino)pyridyl Iron-catalyzed Oligomerization of Ethylene

  • Corresponding author: Jian Ye, polyejian@zju.edu.cn
  • Received Date: 20 March 2018
    Revised Date: 11 April 2018
    Accepted Date: 22 April 2018
    Available Online: 25 May 2018

  • In this study, a series of aryloxy-aluminoxanes originated directly from the hydrolysis of reaction products of AlMe3 and phenols were synthesized, which could serve as effective polymer-retarding activators for the iron-catalyzed ethylene oligomerization. The molar ratios of [PhOH]/[AlMe3] and [H2O]/[Al] during the preparation were explored and their impacts on the oligomerization activity and product distribution were discussed. To obtain the effective activators with good polymer-retarding effect and relatively high activity, the optimized conditions were proposed to be [PhOH]/[AlMe3] = 0.5 and [H2O]/[Al] = 0.7. Various aluminoxanes with different [―OH] sources confirmed the importance of using phenols in preparing the effective polymer-retarding activators. By utilizing these aryloxy-aluminoxanes, the mass fraction of polymers in the total products could be reduced to lower than 1.0 wt%, which is much lower than that of the MAO-activated systems (> 30 wt%). This is a potential benefit for the industrial application of the iron-catalyzed oligomerization process.
  • 加载中
    1. [1]

      Breuil, P. A. R.; Magna, L.; Olivier-Bourbigou, H. Role of homogeneous catalysis in oligomerization of olefins: Focus on selected examples based on Group 4 to Group 10 transition metal complexes. Catal. Lett. 2015, 145(1), 173−192  doi: 10.1007/s10562-014-1451-x

    2. [2]

      Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Novel olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, (7), 849−850  doi: 10.1039/a801933i

    3. [3]

      Small, B. L.; Brookhart, M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-olefins. J. Am. Chem. Soc. 1998, 120(28), 7143−7144  doi: 10.1021/ja981317q

    4. [4]

      Britovsek, G. J. P.; Mastroianni, S.; Solan, G. A.; Baugh, S. P. D.; Redshaw, C.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Elsegood, M. R. J. Oligomerisation of ethylene by bis(imino)pyridyliron and cobalt complexes. Chem. Eur. J. 2000, 6(12), 2221−2231  doi: 10.1002/(ISSN)1521-3765

    5. [5]

      Flisak, Z.; Sun, W. H. Progression of diiminopyridines: From single application to catalytic versatility. ACS Catal. 2015, 5(8), 4713−4724  doi: 10.1021/acscatal.5b00820

    6. [6]

      Bianchini, C.; Giambastiani, G.; Rios, I. G.; Mantovani, G.; Meli, A.; Segarra, A. M. Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino)pyridyl ligands. Coord. Chem. Rev. 2006, 250(11-12), 1391−1418  doi: 10.1016/j.ccr.2005.12.018

    7. [7]

      Gibson, V. C.; Redshaw, C.; Solan, G. A. Bis(imino)pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107(5), 1745−1776  doi: 10.1021/cr068437y

    8. [8]

      Boudier, A.; Breuil, P. A. R.; Magna, L.; Olivier-Bourbigou, H.; Braunstein, P. Ethylene oligomerization using iron complexes: beyond the discovery of bis(imino)pyridine ligands. Chem. Commun. 2014, 50(12), 1398−1407  doi: 10.1039/c3cc47834c

    9. [9]

      Hanton, M. J.; Tenza, K. Bis(imino)pyridine complexes of the first-row transition metals: Alternative methods of activation. Organometallics 2008, 27(21), 5712−5716  doi: 10.1021/om800744j

    10. [10]

      Su, B.; Feng, G. Influence of the metal centers of 2,6-bis(imino)pyridyl transition metal complexes on ethylene polymerization/oligomerization catalytic activities. Polym. Int. 2010, 59(8), 1058−1063  doi: doi.org/10.1002/pi.2824

    11. [11]

      Ye, J.; Jiang, B. B.; Wang, J. D.; Yang, Y. R.; Pu, Q. Siloxane-mediated ethylene oligomerization with iron-based catalysts: Retarding the polymer formation. J. Polym. Sci., Part A: Polym. Chem. 2014, 52(19), 2748−2759  doi: 10.1002/pola.v52.19

    12. [12]

      Schmidt, R.; Welch, M. B.; Palackal, S. J.; Alt, H. G. Heterogenized iron(II) complexes as highly active ethene polymerization catalysts. J. Mol. Catal. A: Chem. 2002, 179(1-2), 155−173  doi: 10.1016/S1381-1169(01)00333-8

    13. [13]

      Ma, Z.; Ke, Y. C.; Wang, H.; Guo, C. Y.; Zhang, M. G.; Sun, W. H.; Hu, Y. L. Ethylene polymerization with a silica-supported iron-based diimine catalyst. J. Appl. Polym. Sci. 2003, 88(2), 466−469  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Zheng, Z. J.; Liu, J. Y.; Li, Y. S. Ethylene polymerization with silica-supported bis(imino)pyridyl iron(II) catalysts. J. Catal. 2005, 234(1), 101−110  doi: 10.1016/j.jcat.2005.05.022

    15. [15]

      Li, W.; Yang, H.; Zhang, J.; Mu, J.; Gong, D.; Wang, X. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene. Chem. Commun. 2016, 52(74), 11092−11095  doi: 10.1039/c6cc04814e

    16. [16]

      Small, B. L. Discovery and development of pyridine-bis(imine) and related catalysts for olefin polymerization and oligomerization. Acc. Chem. Res. 2015, 48(9), 2599−2611  doi: 10.1021/acs.accounts.5b00252

    17. [17]

      Sun, W. H.; Jie, S. Y.; Zhang, S.; Zhang, W.; Song, Y. X.; Ma, H. W.; Chen, J.; Wedeking, K.; Fröhlich, R. Iron complexes bearing 2-imino-1,10-phenanthrolinyl ligands as highly active catalysts for ethylene oligomerization. Organometallics 2006, 25(3), 666−677  doi: 10.1021/om050891p

    18. [18]

      Wang, Z.; Solan, G. A.; Zhang, W. J.; Sun, W. H. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev. 2018, 363, 92−108  doi: 10.1016/j.ccr.2018.02.016

    19. [19]

      Chen, Y. F.; Qian, C. T.; Sun, J. Fluoro-substituted 2,6-bis(imino)pyridyl iron and cobalt complexes: High-activity ethylene oligomerization catalysts. Organometallics 2003, 22(6), 1231−1236  doi: 10.1021/om020818o

    20. [20]

      Zhang, Z. C.; Zou, J. F.; Cui, N. N.; Ke, Y. C.; Hu, Y. L. Ethylene oligomerization catalyzed by a novel iron complex containing fluoro and methyl substituents. J. Mol. Catal. A: Chem. 2004, 219(2), 249−254  doi: 10.1016/j.molcata.2004.05.014

    21. [21]

      Zhang, Z. C.; Chen, S. T.; Zhang, X. F.; Li, H. Y.; Ke, Y. C.; Lu, Y. Y.; Hu, Y. L. A series of novel 2,6-bis(imino)pyridyl iron catalysts: synthesis, characterization and ethylene oligomerization. J. Mol. Catal. A: Chem. 2005, 230(1–2), 1−8  doi: 10.1016/j.molcata.2004.11.028

    22. [22]

      Ionkin, A. S.; Marshall, W. J.; Adelman, D. J.; Fones, B. B.; Fish, B. M.; Schiffhauer, M. F.; Spence, R. E.; Xie, T. High-temperature catalysts for the production of α-olefins based on iron(II) and cobalt(II) tridentate bis(imino)pyridine complexes with a double pattern of substitution: o-methyl plus o-fluorine in the same imino arm. Organometallics 2008, 27(6), 1147−1156  doi: 10.1021/om701204w

    23. [23]

      Xie, G.; Li, T.; Zhang, A. Highly active and selective ethylene oligomerization catalysts: Asymmetric 2,6-bis(imino)pyridyl iron(II) complexes with alkyl and halogen substitutients. Inorg. Chem. Commun. 2010, 13(10), 1199−1202  doi: 10.1016/j.inoche.2010.07.003

    24. [24]

      Chen, E. Y. X.; Marks, T. J. Cocatalysts for metal-catalyzed olefin polymerization: Activators, activation processes, and structure-activity relationships. Chem. Rev. 2000, 100(4), 1391−1434  doi: 10.1021/cr980462j

    25. [25]

      Zijlstra, H. S.; Harder, S. Methylalumoxane - History, production, properties, and applications. Eur. J. Inorg. Chem. 2015, 2015(1), 19−43  doi: 10.1002/ejic.201402978

    26. [26]

      Kumar, K. R.; Sivaram, S. Ethylene polymerization using iron(II)bis(imino) pyridyl and nickel (diimine) catalysts: effect of cocatalysts and reaction parameters. Macromol. Chem. Phys. 2000, 201(13), 1513−1520  doi: 10.1002/(ISSN)1521-3935

    27. [27]

      Talsi, E. P.; Babushkin, D. E.; Semikolenova, N. V.; Zudin, V. N.; Panchenko, V. N.; Zakharov, V. A. Polymerization of ethylene catalyzed by iron complex bearing 2,6-bis(imine)pyridyl ligand: 1H and 2H NMR monitoring of ferrous species formed via catalyst activation with AlMe3, MAO, AlMe3/B(C6F5)3 and AlMe3/CPh3(C6F5)4. 3.0.CO;2-3">Macromol. Chem. Phys. 2001, 202(10), 2046−2051  doi: 10.1002/1521-3935(20010601)202:10<2046::AID-MACP2046>3.0.CO;2-3

    28. [28]

      Semikolenova, N. V.; Zakharov, V. A.; Talsi, E. P.; Babushkin, D. E.; Sobolev, A. P.; Echevskaya, L. G.; Khysniyarov, M. M. Study of the ethylene polymerization over homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl complexes of Fe(II) and Co(II). J. Mol. Catal. A: Chem. 2002, 182-183, 283−294  doi: 10.1016/S1381-1169(01)00476-9

    29. [29]

      Radhakrishnan, K.; Cramail, H.; Deffieux, A.; François, P.; Momtaz, A. Influence of alkylaluminium activators and mixtures thereof on ethylene polymerization with a tridentate bis(imino)pyridinyliron complex. Macromol. Rapid Commun. 2003, 24(3), 251−254  doi: 10.1002/marc.200390036

    30. [30]

      Bryliakov, K. P.; Semikolenova, N. V.; Zakharov, V. A.; Talsi, E. P. Active intermediates of ethylene polymerization over 2,6-bis(imino)pyridyl iron complex activated with aluminum trialkyls and methylaluminoxane. Organometallics 2004, 23(22), 5375−5378  doi: 10.1021/om0497184

    31. [31]

      Barabanov, A. A.; Bukatov, G. D.; Zakharov, V. A.; Semikolenova, N. V.; Echevskaja, L. G.; Matsko, M. A. Kinetic peculiarities of ethylene polymerization over homogeneous bis(imino)pyridine Fe(II) catalysts with different activators. Macromol. Chem. Phys. 2005, 206(22), 2292−2298  doi: 10.1002/(ISSN)1521-3935

    32. [32]

      Wang, S. B.; Liu, D. B.; Huang, R. B.; Zhang, Y. D.; Mao, B. Q. Studies on the activation and polymerization mechanism of ethylene polymerization catalyzed by bis(imino)pyridyl iron(II) precatalyst with alkylaluminum. J. Mol. Catal. A: Chem. 2006, 245(1-2), 122−131  doi: 10.1016/j.molcata.2005.09.023

    33. [33]

      Bryliakov, K. P.; Talsi, E. P.; Semikolenova, N. V.; Zakharov, V. A. Formation and nature of the active sites in bis(imino)pyridine iron-based polymerization catalysts. Organometallics 2009, 28(11), 3225−3232  doi: 10.1021/om8010905

    34. [34]

      Semikolenova, N. V.; Zakharov, V. A.; Echevskaja, L. G.; Matsko, M. A.; Bryliakov, K. P.; Talsi, E. P. Homogeneous catalysts for ethylene polymerization based on bis(imino)pyridine complexes of iron, cobalt, vanadium and chromium. Catal. Today 2009, 144(3-4), 334−340  doi: 10.1016/j.cattod.2009.01.022

    35. [35]

      Boudene, Z.; Boudier, A.; Breuil, P. A. R.; Olivier-Bourbigou, H.; Raybaud, P.; Toulhoat, H.; de Bruin, T. Understanding the role of aluminum-based activators in single site iron catalysts for ethylene oligomerization. J. Catal. 2014, 317, 153−157  doi: 10.1016/j.jcat.2014.06.013

    36. [36]

      Boudier, A.; Breuil, P. A. R.; Magna, L.; Olivier-Bourbigou, H.; Braunstein, P. Alternative aluminum-based cocatalysts for the iron-catalyzed oligomerization of ethylene. Dalton Trans. 2015, 44(29), 12995−12998  doi: 10.1039/C5DT01367D

    37. [37]

      Scott, J.; Gambarotta, S.; Korobkov, I.; Knijnenburg, Q.; de Bruin, B.; Budzelaar, P. H. M. Formation of a paramagnetic Al complex and extrusion of Fe during the reaction of (diiminepyridine)Fe with AIR3 (R = Me, Et). J. Am. Chem. Soc. 2005, 127(49), 17204−17206  doi: 10.1021/ja056135s

    38. [38]

      Tritto, I.; Zucchi, D.; Destro, M.; Sacchi, M. C.; Dall'Occo, T.; Galimberti, M. NMR investigations of the reactivity between zirconocenes and beta-alkyl-substituted aluminoxanes. J. Mol. Catal. A: Chem. 2000, 160(1), 107−114  doi: 10.1016/S1381-1169(00)00237-5

    39. [39]

      Wang, Q.; Weng, J. H.; Fan, Z. Q.; Feng, L. X. Study on polymerization of ethylene with Cp2ZrCl2/aluminoxanes. Eur. Polym. J. 2000, 36(6), 1265−1270  doi: 10.1016/S0014-3057(99)00184-6

    40. [40]

      Wang, Q.; Yang, H. X.; Fan, Z. Q. Efficient activators for an iron catalyst in the polymerization of ethylene. 3.0.CO;2-A">Macromol. Rapid Commun. 2002, 23(10-11), 639−642  doi: 10.1002/1521-3927(20020701)23:10/11<639::AID-MARC639>3.0.CO;2-A

    41. [41]

      Wang, Q.; Li, L. D.; Fan, Z. Q. Polyethylene with bimodal molecular weight distribution synthesized by 2,6-bis(imino)pyridyl complexes of Fe(II) activated with various activators. Eur. Polym. J. 2004, 40(8), 1881−1886  doi: 10.1016/j.eurpolymj.2004.03.003

    42. [42]

      Wang, Q.; Yang, H. X.; Fan, Z. Q.; Xu, H. Performance of various activators in ethylene polymerization based on an iron(II) catalyst system. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(5), 1093−1099  doi: 10.1002/pola.11078

    43. [43]

      Wang, Q.; Li, L. D.; Fan, Z. Q. Effects of tetraalkylalumino-xane activators on ethylene polymerization catalyzed by iron-based complexes. Eur. Polym. J. 2005, 41(6), 1170−1176  doi: 10.1016/j.eurpolymj.2005.01.008

    44. [44]

      Bravaya, N. M.; Panin, A. N.; Faingol’d, E. E.; Saratovskikh, S. L.; Babkina, O. N.; Zharkov, I. V.; Perepelitsina, E. O. Isobutyl-alumoxanes as high-performance activators of rac-Et(2-MeInd)2ZrMe2 in copolymerization of ethylene with propylene and ternary copolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene. Polym. Bull. 2016, 73(2), 473−491  doi: 10.1007/s00289-015-1505-2

    45. [45]

      Ye, J.; Jiang, B. B.; Qin, Y. C.; Zhang, W.; Chen, Y. M.; Wang, J. D.; Yang, Y. R. Exploring the effects of phenolic compounds on bis(imino)pyridine iron-catalyzed ethylene oligomerization. RSC Adv. 2015, 5(116), 95981−95993  doi: 10.1039/C5RA19972G

    46. [46]

      Zhang, W.; Ye, J.; Jiang, B. B.; Wang, J. D.; Liao, Z. W.; Huang, Z. L.; Yang, Y. R.; Ye, Z. Tuning bis(imino)pyridyl iron-catalyzed ethylene oligomerization by modification of MAO with p-BrPhOH. Macromol. React. Eng. 2018. doi: 10.1002/mren.201700061  doi: 10.1002/mren.201700061

    47. [47]

      Busico, V.; Cipullo, R.; Cutillo, F.; Friederichs, N.; Ronca, S.; Wang, B. Improving the performance of methylalumoxane: A facile and efficient method to trap "free" trimethylaluminum. J. Am. Chem. Soc. 2003, 125(41), 12402−12403  doi: 10.1021/ja0372412

    48. [48]

      Rocchigiani, L.; Busico, V.; Pastore, A.; Macchioni, A. Probing the interactions between all components of the catalytic pool for homogeneous olefin polymerisation by diffusion NMR spectroscopy. Dalton Trans. 2013, 42(25), 9104−9111  doi: 10.1039/c3dt00041a

    49. [49]

      Kissin, Y. V. Catalyst systems for alkene polymerization based on metallocene complexes and sterically hindered organoaluminates. Macromolecules 2003, 36(20), 7413−7421  doi: 10.1021/ma0345854

    50. [50]

      Kissin, Y. V. Catalyst systems for alkene polymerization based on metallocene complexes and phenoxy alumoxane with a perfluorinated phenyl group. Macromol. Rapid Commun. 2004, 25(17), 1554−1557  doi: 10.1002/(ISSN)1521-3927

    51. [51]

      Wieser, U.; Schaper, F.; Brintzinger, H. H. Methylalumoxane (MAO)-derived MeMAO- anions in zirconocene-based polymerization catalyst systems - A UV-Vis spectroscopic study. Macromol. Symp. 2006, 236(1), 63−68  doi: 10.1002/(ISSN)1521-3900

    52. [52]

      Babushkin, D. E.; Naundorf, C.; Brintzinger, H. H. Distinct methylalumoxane(MAO)-derived Me-MAO- anions in contact with a zirconocenium cation - a 13C-NMR study. Dalton Trans. 2006, (38), 4539−4544  doi: 10.1039/B611028M

    53. [53]

      Stapleton, R. A.; Galan, B. R.; Collins, S.; Simons, R. S.; Garrison, J. C.; Youngs, W. J. Bulky aluminum alkyl scavengers in olefin polymerization with group 4 catalysts. J. Am. Chem. Soc. 2003, 125(31), 9246−9247  doi: 10.1021/ja030121+

    54. [54]

      Stapleton, R. A.; Al-Humydi, A.; Chai, J.; Galan, B. R.; Collins, S. Sterically hindered aluminum alkyls: Weakly interacting scavenging agents of use in olefin polymerization. Organometallics 2006, 25(21), 5083−5092  doi: 10.1021/om060474s

    55. [55]

      Faingol'd, E. E.; Zharkov, I. V.; Bravaya, N. M.; Chernyak, A. V. Hydrolysis of isobutylaluminum aryloxides studied by 1H NMR and quantum chemical methods. Russ. Chem. Bull. 2016, 65(8), 1958−1965  doi: 10.1007/s11172-016-1536-3

    56. [56]

      Kilpatrick, A. F. R.; Rees, N. H.; Sripothongnak, S.; Buffet, J. C.; O’Hare, D. Slurry-phase ethylene polymerization using penta-fluorophenyl- and pentafluorophenoxy-modified solid poly-methylaluminoxanes. Organometallics 2018, 37(1), 156−164  doi: 10.1021/acs.organomet.7b00846

    57. [57]

      Deng, L. Q.; Margl, P.; Ziegler, T. Mechanistic aspects of ethylene polymerization by iron(II)-bisimine pyridine catalysts: A combined density functional theory and molecular mechanics study. J. Am. Chem. Soc. 1999, 121(27), 6479−6487  doi: 10.1021/ja984385l

    58. [58]

      Sinn, H. Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments. Macromol. Symp. 1995, 97(1), 27−52  doi: 10.1002/masy.19950970105

    59. [59]

      Babushkin, D. E.; Semikolenova, N. V.; Panchenko, V. N.; Sobolev, A. P.; Zakharov, V. A.; Talsi, E. P. Multinuclear NMR investigation of methylaluminoxane. Macromol. Chem. Phys. 1997, 198(12), 3845−3854  doi: 10.1002/macp.1997.021981206

    60. [60]

      Imhoff, D. W.; Simeral, L. S.; Sangokoya, S. A.; Peel, J. H. Characterization of methylaluminoxanes and determination of trimethylaluminum using proton NMR. Organometallics 1998, 17(10), 1941−1945  doi: 10.1021/om980046p

    61. [61]

      Bryliakov, K. P.; Semikolenova, N. V.; Panchenko, V. N.; Zakharov, V. A.; Brintzinger, H. H.; Talsi, E. P. Activation of rac-Me2Si(Ind)2ZrCl2 by methylalumoxane modified by aluminum alkyls: An EPR spin-probe, 1H NMR, and polymerization study. Macromol. Chem. Phys. 2006, 207(3), 327−335  doi: 10.1002/(ISSN)1521-3935

    62. [62]

      Ghiotto, F.; Pateraki, C.; Tanskanen, J.; Severn, J. R.; Luehmann, N.; Kusmin, A.; Stellbrink, J.; Linnolahti, M.; Bochmann, M. Probing the structure of methylalumoxane (MAO) by a combined chemical, spectroscopic, neutron scattering, and computational approach. Organometallics 2013, 32(11), 3354−3362  doi: 10.1002/mwen.201700061

    63. [63]

      Obrey, S. J.; Bott, S. G.; Barron, A. R. Aluminum alkoxides as synthons for methylalumoxane (MAO): Product-catalyzed thermal decomposition of [Me2Al(μ-OCPh3)]2. Organometallics 2001, 20(24), 5162−5170  doi: 10.1021/om0106128

    64. [64]

      Nekhaeva, L. A.; Bondarenko, G. N.; Rykov, S. V.; Nekhaev, A. I.; Krentsel, B. A.; Mar'in, V. P.; Vyshinskaya, L. I.; Khrapova, I. M.; Polonskii, A. V.; Korneev, N. N. IR and NMR studies on zirconocene dichloride/methylalumoxane systems - catalysts for olefin polymerization J. Organomet. Chem. 1991, 406(1-2), 139−146  doi: 10.1016/0022-328X(91)83180-C

    65. [65]

      Sugano, T.; Matsubara, K.; Fujita, T.; Takahashi, T. Characterization of alumoxanes by 27Al-NMR spectra. J. Mol. Catal. 1993, 82(1), 93−101  doi: 10.1016/0304-5102(93)80074-5

  • 加载中
    1. [1]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    4. [4]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    5. [5]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    6. [6]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    7. [7]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    8. [8]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    9. [9]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    10. [10]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    11. [11]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    12. [12]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    13. [13]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    14. [14]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    15. [15]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    18. [18]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    19. [19]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    20. [20]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

Metrics
  • PDF Downloads(0)
  • Abstract views(819)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return