Citation: Pattama Phomdum, Sana Gassara, André Deratani, Watchanida Chinpa. Enhancement of Resistance to Protein Fouling of Poly(ether imide) Membrane by Surface Grafting with PEG under Organic Solvent-free Condition[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1157-1167. doi: 10.1007/s10118-018-2144-5 shu

Enhancement of Resistance to Protein Fouling of Poly(ether imide) Membrane by Surface Grafting with PEG under Organic Solvent-free Condition

  • Corresponding author: Watchanida Chinpa, watchanida.c@psu.ac.th
  • Received Date: 2 January 2018
    Revised Date: 1 April 2018
    Accepted Date: 18 April 2018
    Available Online: 29 May 2018

  • Poly(ether imide) (PEI) membrane with enhanced antifouling property was successfully prepared in a mild and simple procedure. The virgin membrane was firstly functionalized with an aqueous solution of diamino-terminated poly(ethylene oxide) block copolymer (PEG-diamine). Glutaraldehyde was used in a second step as a linker to chemically attach additional PEG-diamine to the primary amine groups grafted on PEI membrane surface. Immobilization of PEG segments was confirmed using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. Ultrafiltration experiments revealed that the enhancement of a PEG coverage on the membrane surface provided superior anti-protein-fouling property. Cycles of protein filtration also demonstrated that the antifouling surface was stable over time and excellent ultrafiltration performance could be maintained without the need of harsh cleansing operation.
  • 加载中
    1. [1]

      Su, Y.; Li, C.; Zhao, W.; Shi, Q.; Wang, H.; Jiang, Z.; Zhu, S. Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. J. Membr. Sci. 2008, 322, 171−177  doi: 10.1016/j.memsci.2008.05.047

    2. [2]

      Shi, Q.; Su, Y.; Zhao, W.; Li, C.; Hu, Y.; Jiang, Z.; Zhu, S. Zwit-terionic polyethersulfone ultrafiltration membrane with superior antifouling property. J. Membr. Sci. 2008, 319, 271−278  doi: 10.1016/j.memsci.2008.03.047

    3. [3]

      Jung, B. Preparation of hydrophilic polyacrylonitrile blend mem-branes for ultrafiltration. J. Membr. Sci. 2004, 229, 129−136  doi: 10.1016/j.memsci.2003.10.020

    4. [4]

      Castrillón, S. R. V.; Lu, X.; Shaffer, D. L.; Elimelech, M. Amine enrichment and poly(ethyleneglycol) (PEG) surface modifica-tion of thin-film composite forward osmosis membranes for organic fouling control. J. Membr. Sci. 2014, 450, 331−339  doi: 10.1016/j.memsci.2013.09.028

    5. [5]

      Liu, Y.; Zhang, S.; Wang, G. The preparation of antifouling ultrafiltration membrane by surface grafting zwitterionic polymer onto poly(arylene ether sulfone) containing hydroxyl groups membrane. Desalination 2013, 316, 127−136  doi: 10.1016/j.desal.2013.02.004

    6. [6]

      Tripathi, B. P.; Dubey, N. C.; Stamm, M. Polyethyleneglycol cross-linked sulfonated polyethersulfone based filtration membranes with improved antifouling tendency. J. Membr. Sci. 2014, 453, 263−274  doi: 10.1016/j.memsci.2013.11.007

    7. [7]

      Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448−2471  doi: 10.1021/cr800208y

    8. [8]

      Zhu, X. Y.; Loo, H. E.; Bai, R. B. A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci. 2013, 436, 47−56  doi: 10.1016/j.memsci.2013.02.019

    9. [9]

      Fan, X.; Su, Y.; Zhao, X.; Li, Y.; Zhang, R.; Zhao, J.; Jiang, Z.; Zhu, J.; Ma, Y.; Liu, Y. Fabrication of polyvinylchloride ultra-filtration membranes with stable antifouling property by explo-ring the pore formation and surface modification capabilities of polyvinyl formal. J. Membr. Sci. 2014, 464, 100−109  doi: 10.1016/j.memsci.2014.04.005

    10. [10]

      Yang, Y. F.; Li, Y.; Li, Q. L.; Wan, L. S.; Xu, Z. K. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. J. Membr. Sci. 2010, 362, 255−264

    11. [11]

      Chiang, Y.; Chan, Y.; Higuchi, A.; Chen, W.; Ruaan, R. Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property J. Membr. Sci. 2009, 339, 151−159  doi: 10.1016/j.memsci.2009.04.044

    12. [12]

      Liang, L.; Shi, M.; Viswanathan, V. V.; Peurrung, L. M.; Young, J. S. Temperature-sensitive polypropylene membranes prepared by plasma polymerization. J. Membr. Sci. 2000, 177, 97−108  doi: 10.1016/S0376-7388(00)00453-1

    13. [13]

      Fang, Y. Influence of degree of grafting and grafting temperature on the permeabilities of grafted polypropylene membranes. J. Appl. Polym. Sci. 1998, 68, 83−89  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Deng, B.; Yang, X.; Xie, L.; Li, J.; Hou, Z.; Yao, S.; Liang, G.; Sheng, K.; Huang, Q. Microfiltration membranes with pH dependent property prepared from poly(methacrylic acid) grafted polyethersulfone powder. J. Membr. Sci. 2009, 330, 363−368  doi: 10.1016/j.memsci.2009.01.010

    15. [15]

      Goddard, J. M.; Hotchkiss, J. H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698−725  doi: 10.1016/j.progpolymsci.2007.04.002

    16. [16]

      Meng, J. Q.; Yuan, T.; Kurth, C. J.; Shi, Q.; Zhang Y. F. Synthe-sis of antifouling nanoporous membranes having tunable nano-pores via click chemistry. J. Membr. Sci. 2012, 401, 109−117  doi: 10.1016/j.memsci.2012.01.049

    17. [17]

      Yuan, T.; Meng, J.; Hao, T.; Zhang, Y.; Xu, M. Polysulfone mem-branes clicked with poly(ethyleneglycol) of high density and uni-formity for oil/water emulsion purification: Effects of tethered hydrogel microstructure. J. Membr. Sci. 2014, 470, 112−124  doi: 10.1016/j.memsci.2014.07.013

    18. [18]

      Pan, Y.; Ma, L.; Lin, S.; Zhang, Y.; Cheng, B.; Meng, J. One-step bimodel grafting via a multicomponent reaction toward antifouling and antibacterial TFC RO membranes. J. Mater. Chem. A 2016, 4, 15945−15960  doi: 10.1039/C6TA05746B

    19. [19]

      Chinpa, W.; Quémener, D.; Bèche, E.; Jiraratananon, R.; Deratani, A. Preparation of poly(etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly(ethylene glycol). J. Membr. Sci. 2010, 365, 89−97  doi: 10.1016/j.memsci.2010.08.040

    20. [20]

      Gassara, S.; Chinpa, W.; Quémener, D.; BenAmar, R.; Deratani, A. Pore size tailoring of poly(ether imide) membrane from UF to NF range by chemical post-treatment using aminated oligomers. J. Membr. Sci. 2013, 436, 36−46  doi: 10.1016/j.memsci.2013.02.005

    21. [21]

      Albrecht, W.; Seifert, B.; Weigel, T.; Schosssing, M.; Holländer, A.; Groth, T.; Hilke, R. Amination of poly(etherimide) membranes using di- and multivalent amines. Macromol. Chem. Phys. 2003, 204, 510−521  doi: 10.1002/(ISSN)1521-3935

    22. [22]

      Santoso, F.; Albrecht, W.; Schroeter, M.; Weigel, T.; Paul, D.; Schomäcker, R. A novel technique for preparation of aminated polyimide membranes with microfiltration characterization. J. Membr. Sci. 2003, 223, 171−185  doi: 10.1016/S0376-7388(03)00321-1

    23. [23]

      Trimpert, C.; Boese, G.; Albrecht, W.; Richau, K.; Weigel, T.; Lendlein, A.; Groth T. Poly(etherimide) membranes modified with poly(ethylene imine) as potential carrier for epidermal substitutes. Macromol. Biosci. 2003, 6, 274−284  doi: 10.1002/mabi.200500238

    24. [24]

      Albrecht, W.; Schauer, J.; Weigel, T.; Richau, K.; Groth, T.; Lendlein, A. Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membrane with various morphologies. J. Membr. Sci. 2007, 292, 145−157  doi: 10.1016/j.memsci.2007.01.027

    25. [25]

      Shaffer, D. L.; Jaramillo, H.; Castrillón, S. R. V.; Lu, X.; Elimelech, M. Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance. J. Membr. Sci. 2015, 490, 209−219  doi: 10.1016/j.memsci.2015.04.060

    26. [26]

      Zhu, L. P.; Xu, L.; Zhu, B. K.; Feng, Y. X.; Xu, Y. Y. Preparation and characterization of improved fouling-resistant PPESK ultrafiltration membranes with amphiphilic PPESK-graft-PEG copolymers as additives. J. Membr. Sci. 2007, 294, 196−206  doi: 10.1016/j.memsci.2007.02.038

    27. [27]

      Kang, G.; Liu, M.; Lin, B.; Cao, Y.; Yuan, Q. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol). Polymer 2007, 48, 1165−1170  doi: 10.1016/j.polymer.2006.12.046

    28. [28]

      Fatimah, R.; Rasdi, M.; Phan, A. N.; Harvey, A. P. Rapid determination of reaction order and rate constants of an imine synthesis reaction using a mesoscale oscillatory baffled reactor. Chem. Eng. J. 2013, 222, 282−291  doi: 10.1016/j.cej.2013.02.080

    29. [29]

      Bourgoin, D.; Turgeon, S.; Ross, G. G. Characterization of hydrogenated amorphous carbon films produced by plasma-enhanced chemical vapour deposition with various chemical hybridizations. Thin Solid Films 1999, 357, 246−253  doi: 10.1016/S0040-6090(99)00536-2

    30. [30]

      Point, S.; Minea, T.; Besland, M. P.; Granier, A. Characteriza-tion of carbon nanotubes and carbon nitride nanofibres synthe-sized by PECVD. Eur. Phys. J. Appl. Phys. 2006, 34, 157−163  doi: 10.1051/epjap:2006051

    31. [31]

      Zeze, D. A.; North D. R.; Brown N. M. D.; Anderson C. A. Comparison of CxNy:H films obtained by deposition using magnetron sputtering or an inductively coupled plasma. Surf. Interface Anal. 2000, 29, 369−376  doi: 10.1002/1096-9918(200006)29:63.0.CO;2-D

    32. [32]

      Li, W.; Bian, C.; Fu, C.; Zhou, A.; Shi, C.; Zhang, J. A poly-(amide-co-ester) nanofiltration membrane using monomers of glucose and trimesoyl chloride. J. Membr. Sci. 2016, 504, 185−195  doi: 10.1016/j.memsci.2015.12.064

    33. [33]

      May, C. J.; Canavan, H. E.; Castner, D. G. Quantitative X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy characterization of the components in DNA. Anal. Chem. 2004, 76, 1114−1122  doi: 10.1021/ac034874q

    34. [34]

      Zhang, Y.; Su, Y.; Chen, W.; Peng, J.; Dong, Y.; Jiang, Z.; Liu, H. Appearance of poly(ethylene oxide) segments in the polyamide layer for antifouling nanofiltration membranes. J. Membr. Sci. 2011, 382, 300−307  doi: 10.1016/j.memsci.2011.08.021

    35. [35]

      Oikonomou, E. K.; Karpati, S.; Gassara, S.; Deratani, A.; Beaume, F.; Lorain, O.; Tencé-Girault, S.; Norvez, S. Localization of antifouling surface additives in the pore structure of hollow fiber PVDF membranes. J. Membr. Sci. 2017, 538, 77−85  doi: 10.1016/j.memsci.2017.05.046

    36. [36]

      Zou, L.; Vidalis, I.; Steele, D.; Michelmore, A.; Low, S. P.; Verberk, J. Q. J. C. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. J. Membr. Sci. 2011, 369, 420−428  doi: 10.1016/j.memsci.2010.12.023

    37. [37]

      Yue, W. W.; Li, H, J.; Xiang ,T.; Qin, H.; Sun, S. D.; Zhao, C. S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J. Membr. Sci. 2013, 446, 79−91  doi: 10.1016/j.memsci.2013.06.029

    38. [38]

      Zhao, W.; Su, Y.; Li, C.; Shi, Q.; Ning, X.; Jiang, Z. Fabrication of antifouling polyethersulfone ultrafiltration membrane using Pluronic F127 as both surface modifier and pore-forming agent. J. Membr. Sci. 2008, 318, 405−412  doi: 10.1016/j.memsci.2008.03.013

  • 加载中
    1. [1]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    2. [2]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    3. [3]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    4. [4]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    5. [5]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    6. [6]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    7. [7]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    8. [8]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    9. [9]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    10. [10]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    11. [11]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    12. [12]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    13. [13]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    14. [14]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    15. [15]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    16. [16]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    17. [17]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    18. [18]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    19. [19]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    20. [20]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

Metrics
  • PDF Downloads(0)
  • Abstract views(818)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return