Citation: Yi Huang, Xiao-Xia Li, Lu Zhang, Xiao-Yan Chen, Cheng-Bo Liu, Jing-Qin Chen, Yong Wang, Xin-Tao Shuai. Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1139-1149. doi: 10.1007/s10118-018-2141-8 shu

Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography

  • Corresponding author: Yong Wang, wangy488@mail.sysu.edu.cn
  • Received Date: 27 February 2018
    Revised Date: 23 March 2018
    Accepted Date: 2 April 2018
    Available Online: 10 May 2018

  • Photothermo-chemotherapy, as a new strategy for cancer treatment, incorporates the complementary advantages of photothermal therapy and chemotherapy. In this study, a pH-sensitive diblock copolymer poly(aspartic acid-butanediamine)-poly(2-(diisopropylamino)ethyl methacrylate) (PAsp(DAB)-PDPA) was synthesized and self-assembled into doxorubicin-loaded micelle, which was further used as a template to form a gold nanoshell. After further modification with poly(ethylene glycol), the resulting nanoplatform provided good biocompatibility and desirable photo-thermal conversion efficiency to facilitate photothermal therapy. Meanwhile the nanoparticle also exhibited pH sensitivity, which prevented drug loss while circulating in the blood but enabled rapid drug release after endocytosis. An improved effect was achieved with the combination of photothermal therapy and chemotherapy. In addition, systemic delivery of the nanoplatform could be monitored by photoacoustic tomography. Thereby, this multifunctional nanoplatform would be highly potential for the diagnosis and therapy of cancer.
  • 加载中
    1. [1]

      Kelkar, S. S.; Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879−1903  doi: 10.1021/bc200151q

    2. [2]

      Suter, T. M.; Ewer, M. S. Cancer drugs and the heart: importance and management. Eur. Heart J. 2013, 34(15), 1102  doi: 10.1093/eurheartj/ehs181

    3. [3]

      Kerckhove, N.; Colin, A.; Conde, S.; Chaleteix, C.; Pezet, D.; Balayssac, D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front. Pharmacol. 2017, 8, 86  doi: 10.3389/fphar.2017.00086

    4. [4]

      Zahreddine, H.; Borden, K. L. B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28  doi: 10.3389/fphar.2013.00028

    5. [5]

      May, J. P.; Li, S. D. Hyperthermia-induced drug targeting. Expert Opin. Drug Del. 2013, 10(4), 511−527  doi: 10.1517/17425247.2013.758631

    6. [6]

      van Bree, C.; Krooshoop, J. J.; Rietbroek, R. C.; Kipp, J. B. A.; Piet, J. M. Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res. 1996, 56(3), 563−568

    7. [7]

      Goldberg, S. N.; Kmel, I. R.; Kruskal, J. B.; Reynolds, K.; Monsky, W. L.; Stuart, K. E.; Ahmed, M.; Raptopoulos, V. Radiofrequency ablation of hepatic tumors: Increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am. J. Roentgenol. 2002, 179(1), 93−101  doi: 10.2214/ajr.179.1.1790093

    8. [8]

      Kong, G.; Braun, R. D.; Dewhirst, M. W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60(16), 4440−4445

    9. [9]

      Chen, Y. I.; Peng, C. L.; Lee, P. C.; Tsai, M. H.; Lin, C. Y.; Shih, Y. H.; Wei, M. F.; Luo, T. Y.; Shieh, M. J. Traceable self-assembly of laser-triggered cyanine-based micelle for synergistic therapeutic effect. Adv. Healthc. Mater. 2015, 4(6), 892−902  doi: 10.1002/adhm.201400729

    10. [10]

      Luo, H. H.; Wang, Q. L.; Deng, Y. B.; Yang, T.; Ke, H. T.; Yang, H. H.; He, H.; Guo, Z. Q.; Yu, D.; Wu, H.; Chen, H. B. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater. 2017, 27(39), 1702834  doi: 10.1002/adfm.v27.39

    11. [11]

      Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J.; Deng, L.; Liu, Y. N.; Guo, S. J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemo-therapy of cancer. Adv. Mater. 2017, 29(5), 1603864  doi: 10.1002/adma.201603864

    12. [12]

      Feng, L.; Gai, S.; He, F.; Dai, Y.; Zhong, C.; Yang, P.; Lin, J. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 2017, 147, 39−52  doi: 10.1016/j.biomaterials.2017.09.011

    13. [13]

      Yao, X. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13(2), 1602225  doi: 10.1002/smll.v13.2

    14. [14]

      Riley, R. S.; Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIRES Nanomed. Nanotechnol. 2017, 9(4), e1449  doi: 10.1002/wnan.2017.9.issue-4

    15. [15]

      Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 2013, 117(51), 27073−27080  doi: 10.1021/jp409067h

    16. [16]

      Khlebtov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40(3), 1647−1671  doi: 10.1039/C0CS00018C

    17. [17]

      Jain, P. K.; EI-Sayed, I. H.; EI-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2(1), 18−29  doi: 10.1016/S1748-0132(07)70016-6

    18. [18]

      Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliver. Rev. 2013, 65(5), 663−676  doi: 10.1016/j.addr.2012.05.004

    19. [19]

      Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13(8), 639−650  doi: 10.1038/nmeth.3929

    20. [20]

      Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13(8), 627−638  doi: 10.1038/nmeth.3925

    21. [21]

      Upputuri, P. K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J. Biomed. Opt. 2017, 22(4), 041006

    22. [22]

      Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 2009, 131(47), 17042  doi: 10.1021/ja907069u

    23. [23]

      Lohse, S. E.; Murphy, C. J. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 2013, 25(8), 1250−1261  doi: 10.1021/cm303708p

    24. [24]

      Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X. D.; Xia, Y. N. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17(18), 2255−261  doi: 10.1002/(ISSN)1521-4095

    25. [25]

      Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, E. Y. S.; Qu, Z.; Xing, Z. W.; Guo, C. X.; Yue, X. L.; Liu, J. B. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. 2011, 50(13), 3017−3021  doi: 10.1002/anie.201008286

    26. [26]

      Zhang,L.; Xiao, H.; Li, J. G.; Cheng, D.; Shuai, X. T. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy. Nanoscale 2016, 8(25), 12608−12617  doi: 10.1039/C5NR07868G

    27. [27]

      Zhou, G. Y.; Xiao, H.; Li, X. X.; Huang, Y.; Song, W.; Song, L.; Chen, M. W.; Cheng, D.; Shuai, X. T. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater. 2017, 64, 223−236  doi: 10.1016/j.actbio.2017.10.018

    28. [28]

      Lu, L.; Wang, Y.; Cao, M.; Chen, M.; Lin, B.; Duan, X.; Zhang, F.; Mao, J.; Shuai, X.; Shen, J. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv. 2017, 7, 15041−15052  doi: 10.1039/C7RA00345E

    29. [29]

      Lai, J. T.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002, 35(18), 6754−6756  doi: 10.1021/ma020362m

    30. [30]

      Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 2005, 127(51), 17982−17983  doi: 10.1021/ja056514l

    31. [31]

      Pissuwan, D.; Boyer, C.; Gunasekaran, K.; Davis, T. P.; Bulmus, V. In vitro cytotoxicity of RAFT polymers. Biomacromolecules 2010, 11(2), 412−420  doi: 10.1021/bm901129x

    32. [32]

      Chong, Y. K.; Moad, G.; Rizardo, E.; Thang, S. H. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction. Macromolecules 2007, 40(13), 4446−4455  doi: 10.1021/ma062919u

    33. [33]

      Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2017. doi: 10.1007/s12274-017-1939-y  doi: 10.1007/s12274-017-1939-y

    34. [34]

      Kwon, G. S.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 1995, 12(2), 192−195  doi: 10.1023/A:1016266523505

    35. [35]

      Tan, Y. W.; Li, Y. F.; Zhu, D. B. Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 2002, 18(8), 3392−3395  doi: 10.1021/la011612f

    36. [36]

      Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105(19), 4065−4067  doi: 10.1021/jp0107964

    37. [37]

      Petersen, H.; Fechner, P. M.; Fischer, D. Kissel, T. Synthesis, characterization, and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) block copolymers. Macromolecules 2002, 35(18), 6867−6874

    38. [38]

      Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceut. 2008, 5(4), 505−515  doi: 10.1021/mp800051m

    39. [39]

      Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65(1-2), 271−284  doi: 10.1016/S0168-3659(99)00248-5

    40. [40]

      Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res. 2013, 12(2), 265−273

    41. [41]

      Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126(3), 187−204  doi: 10.1016/j.jconrel.2007.12.017

    42. [42]

      Canton, I.; Battaglia, G. Endocytosis at nanoscale. Chem. Soc. Rev. 2012, 41(7), 2718−2739  doi: 10.1039/c2cs15309b

    43. [43]

      Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004, 98(3), 415−426  doi: 10.1016/j.jconrel.2004.06.003

  • 加载中
    1. [1]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    2. [2]

      Wen ZhongDan ZhengXukun LiaoYadi ZhouYan JiangTing GaoMing LiChengli Yang . Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae. Chinese Chemical Letters, 2025, 36(3): 110448-. doi: 10.1016/j.cclet.2024.110448

    3. [3]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    4. [4]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    5. [5]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    6. [6]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    7. [7]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    8. [8]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    9. [9]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    10. [10]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    11. [11]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    12. [12]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    13. [13]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    14. [14]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    15. [15]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    16. [16]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    17. [17]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    18. [18]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    19. [19]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    20. [20]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

Metrics
  • PDF Downloads(0)
  • Abstract views(813)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return