Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography
- Corresponding author: Yong Wang, wangy488@mail.sysu.edu.cn
Citation:
Yi Huang, Xiao-Xia Li, Lu Zhang, Xiao-Yan Chen, Cheng-Bo Liu, Jing-Qin Chen, Yong Wang, Xin-Tao Shuai. Multifunctional Nanoplatform Based on pH-responsive Micelle Coated with Discontinuous Gold Shell for Cancer Photothermo-chemotherapy and Photoacoustic Tomography[J]. Chinese Journal of Polymer Science,
;2018, 36(10): 1139-1149.
doi:
10.1007/s10118-018-2141-8
Kelkar, S. S.; Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879−1903
doi: 10.1021/bc200151q
Suter, T. M.; Ewer, M. S. Cancer drugs and the heart: importance and management. Eur. Heart J. 2013, 34(15), 1102
doi: 10.1093/eurheartj/ehs181
Kerckhove, N.; Colin, A.; Conde, S.; Chaleteix, C.; Pezet, D.; Balayssac, D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: a comprehensive literature review. Front. Pharmacol. 2017, 8, 86
doi: 10.3389/fphar.2017.00086
Zahreddine, H.; Borden, K. L. B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28
doi: 10.3389/fphar.2013.00028
May, J. P.; Li, S. D. Hyperthermia-induced drug targeting. Expert Opin. Drug Del. 2013, 10(4), 511−527
doi: 10.1517/17425247.2013.758631
van Bree, C.; Krooshoop, J. J.; Rietbroek, R. C.; Kipp, J. B. A.; Piet, J. M. Hyperthermia enhances tumor uptake and antitumor efficacy of thermostable liposomal daunorubicin in a rat solid tumor. Cancer Res. 1996, 56(3), 563−568
Goldberg, S. N.; Kmel, I. R.; Kruskal, J. B.; Reynolds, K.; Monsky, W. L.; Stuart, K. E.; Ahmed, M.; Raptopoulos, V. Radiofrequency ablation of hepatic tumors: Increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am. J. Roentgenol. 2002, 179(1), 93−101
doi: 10.2214/ajr.179.1.1790093
Kong, G.; Braun, R. D.; Dewhirst, M. W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60(16), 4440−4445
Chen, Y. I.; Peng, C. L.; Lee, P. C.; Tsai, M. H.; Lin, C. Y.; Shih, Y. H.; Wei, M. F.; Luo, T. Y.; Shieh, M. J. Traceable self-assembly of laser-triggered cyanine-based micelle for synergistic therapeutic effect. Adv. Healthc. Mater. 2015, 4(6), 892−902
doi: 10.1002/adhm.201400729
Luo, H. H.; Wang, Q. L.; Deng, Y. B.; Yang, T.; Ke, H. T.; Yang, H. H.; He, H.; Guo, Z. Q.; Yu, D.; Wu, H.; Chen, H. B. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater. 2017, 27(39), 1702834
doi: 10.1002/adfm.v27.39
Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J.; Deng, L.; Liu, Y. N.; Guo, S. J. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemo-therapy of cancer. Adv. Mater. 2017, 29(5), 1603864
doi: 10.1002/adma.201603864
Feng, L.; Gai, S.; He, F.; Dai, Y.; Zhong, C.; Yang, P.; Lin, J. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 2017, 147, 39−52
doi: 10.1016/j.biomaterials.2017.09.011
Yao, X. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13(2), 1602225
doi: 10.1002/smll.v13.2
Riley, R. S.; Day, E. S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. WIRES Nanomed. Nanotechnol. 2017, 9(4), e1449
doi: 10.1002/wnan.2017.9.issue-4
Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 2013, 117(51), 27073−27080
doi: 10.1021/jp409067h
Khlebtov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40(3), 1647−1671
doi: 10.1039/C0CS00018C
Jain, P. K.; EI-Sayed, I. H.; EI-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2(1), 18−29
doi: 10.1016/S1748-0132(07)70016-6
Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliver. Rev. 2013, 65(5), 663−676
doi: 10.1016/j.addr.2012.05.004
Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13(8), 639−650
doi: 10.1038/nmeth.3929
Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13(8), 627−638
doi: 10.1038/nmeth.3925
Upputuri, P. K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J. Biomed. Opt. 2017, 22(4), 041006
Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J. Am. Chem. Soc. 2009, 131(47), 17042
doi: 10.1021/ja907069u
Lohse, S. E.; Murphy, C. J. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 2013, 25(8), 1250−1261
doi: 10.1021/cm303708p
Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X. D.; Xia, Y. N. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17(18), 2255−261
doi: 10.1002/(ISSN)1521-4095
Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, E. Y. S.; Qu, Z.; Xing, Z. W.; Guo, C. X.; Yue, X. L.; Liu, J. B. Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew. Chem. Int. Ed. 2011, 50(13), 3017−3021
doi: 10.1002/anie.201008286
Zhang,L.; Xiao, H.; Li, J. G.; Cheng, D.; Shuai, X. T. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy. Nanoscale 2016, 8(25), 12608−12617
doi: 10.1039/C5NR07868G
Zhou, G. Y.; Xiao, H.; Li, X. X.; Huang, Y.; Song, W.; Song, L.; Chen, M. W.; Cheng, D.; Shuai, X. T. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomater. 2017, 64, 223−236
doi: 10.1016/j.actbio.2017.10.018
Lu, L.; Wang, Y.; Cao, M.; Chen, M.; Lin, B.; Duan, X.; Zhang, F.; Mao, J.; Shuai, X.; Shen, J. A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv. 2017, 7, 15041−15052
doi: 10.1039/C7RA00345E
Lai, J. T.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 2002, 35(18), 6754−6756
doi: 10.1021/ma020362m
Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 2005, 127(51), 17982−17983
doi: 10.1021/ja056514l
Pissuwan, D.; Boyer, C.; Gunasekaran, K.; Davis, T. P.; Bulmus, V. In vitro cytotoxicity of RAFT polymers. Biomacromolecules 2010, 11(2), 412−420
doi: 10.1021/bm901129x
Chong, Y. K.; Moad, G.; Rizardo, E.; Thang, S. H. Thiocarbonylthio end group removal from RAFT-synthesized polymers by radical-induced reduction. Macromolecules 2007, 40(13), 4446−4455
doi: 10.1021/ma062919u
Wang, Y. R.; Yin, T. H.; Su, Z. W.; Qiu, C.; Wang, Y.; Zheng, R. Q.; Chen, M. W.; Shuai, X. T. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2017. doi: 10.1007/s12274-017-1939-y
doi: 10.1007/s12274-017-1939-y
Kwon, G. S.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 1995, 12(2), 192−195
doi: 10.1023/A:1016266523505
Tan, Y. W.; Li, Y. F.; Zhu, D. B. Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 2002, 18(8), 3392−3395
doi: 10.1021/la011612f
Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105(19), 4065−4067
doi: 10.1021/jp0107964
Petersen, H.; Fechner, P. M.; Fischer, D. Kissel, T. Synthesis, characterization, and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) block copolymers. Macromolecules 2002, 35(18), 6867−6874
Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceut. 2008, 5(4), 505−515
doi: 10.1021/mp800051m
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 2000, 65(1-2), 271−284
doi: 10.1016/S0168-3659(99)00248-5
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res. 2013, 12(2), 265−273
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126(3), 187−204
doi: 10.1016/j.jconrel.2007.12.017
Canton, I.; Battaglia, G. Endocytosis at nanoscale. Chem. Soc. Rev. 2012, 41(7), 2718−2739
doi: 10.1039/c2cs15309b
Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004, 98(3), 415−426
doi: 10.1016/j.jconrel.2004.06.003
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Wen Zhong , Dan Zheng , Xukun Liao , Yadi Zhou , Yan Jiang , Ting Gao , Ming Li , Chengli Yang . Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae. Chinese Chemical Letters, 2025, 36(3): 110448-. doi: 10.1016/j.cclet.2024.110448
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Zihong Li , Jie Cheng , Ping Huang , Guoliang Wu , Weiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Ling-Ling Wu , Xiangchuan Meng , Qingyang Zhang , Xiaowan Han , Feiya Yang , Qinghua Wang , Hai-Yu Hu , Nianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
Yunxia Liu , Guandong Wu , Lin Li , Yiming Niu , Bingsen Zhang , Botao Qiao , Junhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
Xiangdong Lai , Tengfei Liu , Zengchao Guo , Yihan Wang , Jiang Xiao , Qingxiu Xia , Xiaohui Liu , Hui Jiang , Xuemei Wang . In situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762
Weijian Zhang , Xianyu Deng , Liying Wang , Jian Wang , Xiuting Guo , Lianggui Huang , Xinyi Wang , Jun Wu , Linjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538