Citation: Guang-Cheng Huang, Sheng-Xiang Ji. Effect of Halogen Chain End Fidelity on the Synthesis of Poly(methyl methacrylate-b-styrene) by ATRP[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1217-1224. doi: 10.1007/s10118-018-2139-2 shu

Effect of Halogen Chain End Fidelity on the Synthesis of Poly(methyl methacrylate-b-styrene) by ATRP

  • Corresponding author: Sheng-Xiang Ji, sji@ciac.ac.cn
  • Received Date: 2 March 2018
    Revised Date: 27 March 2018
    Accepted Date: 30 March 2018
    Available Online: 24 April 2018

  • Poly(methyl methacrylate-b-styrene) (PMMA-b-PS) block copolymers are synthesized by two consecutive ATRPs and fractionated into four fractions. The halogen chain end fidelity (CEF) in PMMA-b-PS is quantified based on the analysis of each fraction. Compared to ethyl 2-phenyl-2-bromoacetate/CuBr/2,2′-bipyridine (EPBA/CuBr/bpy) and CuBr/N,N,N′,N″,N″-pentamethyldiethylene-triamine (CuBr/PMDETA) catalysts, PMMA-b-PS synthesized using p-toluenesulfonyl chloride/CuCl/bpy (TsCl/CuCl/bpy) and CuCl/PMDETA catalysts has a higher halogen CEF and a better control on molecular weight.
  • 加载中
    1. [1]

      Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45(10), 4015−4039  doi: 10.1021/ma3001719

    2. [2]

      Höhne, S.; Uhlmann, P. Synthesis of functional block copolymers and terpolymers containing polyglycidyl methacrylate blocks. J. Polym. Sci., Part A: Polym. Chem. 2015, 53(5), 675−684  doi: 10.1002/pola.v53.5

    3. [3]

      Tsarevsky, N. V.; Matyjaszewski, K. " Green” atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 2007, 107(6), 2270−2299  doi: 10.1021/cr050947p

    4. [4]

      Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): From fundamentals to bioapplications. Chem. Rev. 2016, 116(4), 1803−1949  doi: 10.1021/acs.chemrev.5b00396

    5. [5]

      Matyjaszewski, K.; Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1(4), 276−288  doi: 10.1038/nchem.257

    6. [6]

      Davis, K. A.; Matyjaszewski, K. ABC triblock copolymers prepared using atom transfer radical polymerization techniques. Macromolecules 2001, 34(7), 2101−2107  doi: 10.1021/ma002050u

    7. [7]

      Johnston-Hall, G.; Monteiro, M. J. Kinetic simulations of atom transfer radical polymerization (ATRP) in light of chain length dependent termination. Macromol. Theor. Simul. 2010, 19(7), 387−393  doi: 10.1002/mats.v19:7

    8. [8]

      Van Steenberge, P. H. M.; Vandenbergh, J.; Reyniers, M. F.; Junkers, T.; D’hooge, D. R.; Marin, G. B. Kinetic Monte Carlo generation of complete electron spray ionization mass spectra for acrylate macromonomer synthesis. Macromolecules 2017, 50(7), 2625−2636  doi: 10.1021/acs.macromol.7b00333

    9. [9]

      Jakubowski, W.; Kirci-Denizli, B.; Gil, R. R. Matyjaszewski, K. Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP. Macromol. Chem. Phys. 2008, 209(1), 32−39  doi: 10.1002/(ISSN)1521-3935

    10. [10]

      Krys, P.; Wang, Y.; Matyjaszewski, K.; Harrisson, S. Radical generation and termination in SARA ATRP of methyl acrylate: Effect of solvent, ligand, and chain length. Macromolecules 2016, 49(8), 2977−2984  doi: 10.1021/acs.macromol.6b00345

    11. [11]

      Mendonça, P. V.; Averick, S. E.; Konkolewicz, D.; Serra, A. C.; Popov, A. V.; Guliashvili, T.; Matyjaszewski, K.; Coelho, J. F. J. Straightforward ARGET ATRP for the synthesis of primary amine polymethacrylate with improved chain-end functionality under mild reaction conditions. Macromolecules 2014, 47(14), 4615−4621  doi: 10.1021/ma501007j

    12. [12]

      Nakamura, Y.; Ogihara, T.; Yamago, S. Mechanism of Cu(I)/Cu(0)-mediated reductive coupling reactions of bromine-terminated polyacrylates, polymethacrylates, and polystyrene. ACS Macro Lett. 2016, 5(2), 248−252  doi: 10.1021/acsmacrolett.5b00947

    13. [13]

      Zhong, M.; Matyjaszewski, K. How fast can a CRP be conducted with preserved chain end functionality? Macromolecules 2011, 44(8), 2668−2677  doi: 10.1021/ma102834s

    14. [14]

      Wang, Y.; Zhong, M. J.; Zhang, Y. Z.; Magenau, A. J. D.; Matyjaszewski, K. Halogen conservation in atom transfer radical polymerization. Macromolecules 2012, 45(21), 8929−8932  doi: 10.1021/ma3018958

    15. [15]

      Nystrom, F.; Soeriyadi, A. H.; Boyer, C.; Zetterlund, P. B.; Whittaker, M. R. End-group fidelity of copper(0)-meditated radical polymerization at high monomer conversion: An ESI-MS investigation. J. Polym. Sci., Part A: Polym. Chem. 2011, 49(24), 5313−5321  doi: 10.1002/pola.v49.24

    16. [16]

      Wang, Y.; Soerensen, N.; Zhong, M.; Schroeder, H.; Buback, M.; Matyjaszewski, K. Improving the " livingness” of ATRP by reducing Cu catalyst concentration. Macromolecules 2013, 46(3), 683−691  doi: 10.1021/ma3024393

    17. [17]

      Oh, J.; Kuk, J.; Lee, T.; Ye, J.; Paik, H. J.; Lee, H. W.; Chang, T. Molecular weight distribution of living chains in polystyrene prepared by atom transfer radical polymerization. ACS Macro Lett. 2017, 6(7), 758−761  doi: 10.1021/acsmacrolett.7b00447

    18. [18]

      Min, K.; Gao, H. F.; Matyjaszewski, K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J. Am. Chem. Soc. 2005, 127(11), 3825−3830  doi: 10.1021/ja0429364

    19. [19]

      Han, E.; Stuen, K. O.; La, Y. H.; Nealey, P. F.; Gopalan, P. Effect of composition of substrate-modifying random copolymers on the orientation of symmetric and asymmetric diblock copolymer domains. Macromolecules 2008, 41(23), 9090−9097  doi: 10.1021/ma8018393

    20. [20]

      Pang, Y. Y.; Wan, L.; Huang, G. C.; Zhang, X. S.; Jin, X. S.; Xu, P.; Liu, Y. D.; Han, M. M.; Wu, G. P.; Ji, S. X. Controlling block copolymer-substrate interactions by homopolymer brushes/mats. Macromolecules 2017, 50(17), 6733−6741  doi: 10.1021/acs.macromol.7b00743

    21. [21]

      Welander, A. M.; Kang, H. M.; Stuen, K. O.; Solak, H. H.; Muller, M.; De Pablo, J. J. Nealey, P. F. Rapid directed assembly of block copolymer films at elevated temperatures. Macromolecules 2008, 41(8), 2759−2761

    22. [22]

      Grimaud, T.; Matyjaszewski, K. Controlled/" living” radical polymerization of methyl methacrylate by atom transfer radical polymerization. Macromolecules 1997, 30(7), 2216−2218  doi: 10.1021/ma961796i

    23. [23]

      Matyjaszewski, K.; Wang, J. L.; Grimaud, T.; Shipp, D. A. Controlled/" living” atom transfer radical polymerization of methyl methacrylate using various initiation systems. Macromolecules 1998, 31(5), 1527−1534  doi: 10.1021/ma971298p

    24. [24]

      Mueller, L.; Jakubowski, W.; Tang, W.; Matyjaszewski, K. Successful chain extension of polyacrylate and polystyrene macroinitiators with methacrylates in an ARGET and ICAR ATRP. Macromolecules 2007, 40(18), 6464−6472  doi: 10.1021/ma071130w

    25. [25]

      Luo, X. X.; Zhuang, Y.; Zhao, X.; Zhang, M.; Xu, S. S.; Wang, B. Q. Controlled/living radical polymerization of styrene catalyzed by cobaltocene. Polymer 2008, 49(16), 3457−3461  doi: 10.1016/j.polymer.2008.05.035

    26. [26]

      Mendes, J. P.; Branco, F.; Abreu, C. M. R.; Mendonca, P. V.; Serra, A. C.; Popov, A. V.; Guliashvili, T.; Coelho, J. F. J. Sulfolane: an efficient and universal solvent for copper-mediated atom transfer radical (co)polymerization of acrylates, methacrylates, styrene, and vinyl chloride. ACS Macro Lett. 2014, 3(9), 858−861  doi: 10.1021/mz5003883

    27. [27]

      Kennemur, J. G.; Yao, L.; Bates, F. S.; Hillmyer, M. A. Sub-5 nm domains in ordered poly(cyclohexylethylene)-block-poly(methyl methacrylate) block polymers for lithography. Macromolecules 2014, 47(4), 1411−1418  doi: 10.1021/ma4020164

    28. [28]

      Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. J. Controlling polymer-surface interactions with random copolymer brushes. Science 1997, 275(5305), 1458−1460  doi: 10.1126/science.275.5305.1458

    29. [29]

      Ji, S. X.; Wan, L.; Liu, C. C.; Nealey, P. F. Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication. Prog. Polym. Sci 2016, 54-55, 76−127  doi: 10.1016/j.progpolymsci.2015.10.006

    30. [30]

      Jin, X. S.; Pang, Y. Y.; Ji, S. X. From self-assembled monolayers to chemically patterned brushes: Controlling the orientation of block copolymer domains in films by substrate modification. Chinese J. Polym. Sci. 2016, 34(6), 659−678  doi: 10.1007/s10118-016-1800-x

  • 加载中
    1. [1]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    2. [2]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    3. [3]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    4. [4]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    5. [5]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    6. [6]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    7. [7]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    8. [8]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    9. [9]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    10. [10]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    11. [11]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    12. [12]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    13. [13]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    14. [14]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    15. [15]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    16. [16]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    17. [17]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    18. [18]

      Yijia JiaoYuzhu LiYuting ZhouPeipei CenYi DingYan GuoXiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

Metrics
  • PDF Downloads(0)
  • Abstract views(767)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return