Citation: Yuan Wei, Rui Huang, Peng Dong, Xiao-Dong Qi, Qiang Fu. Preparation of Polylactide/Poly(ether)urethane Blends with Excellent Electro-actuated Shape Memory via Incorporating Carbon Black and Carbon Nanotubes Hybrids Fillers[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1175-1186. doi: 10.1007/s10118-018-2138-3 shu

Preparation of Polylactide/Poly(ether)urethane Blends with Excellent Electro-actuated Shape Memory via Incorporating Carbon Black and Carbon Nanotubes Hybrids Fillers

  • In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the phase morphology and realize rapid electrically actuated shape memory effect (SME). Particularly, the dispersion of conductive fillers, the phase morphology, the electrical conductivities and the shape memory properties of the composites containing CB or CB/CNTs were comparatively investigated. The results suggested that both CB and CNTs were selectively localized in TPU phase, and induced the morphological change from the sea-island structure to the co-continuous structure. The presence of CNTs resulted in a denser CB/CNTs network, which enhanced the continuity of TPU phase. Because the formed continuous TPU phase provided stronger recovery driving force, the PLA/TPU/CB/CNTs composites showed better shape recovery properties compared with the PLA/TPU/CB composites at the same CB content. Moreover, the CB and CNTs exerted a synergistic effect on enhancing the electrical conductivities of the composites. As a result, the prepared composites exhibited excellent electrically actuated SME and the shape recovery speed was also greatly enhanced. This work demonstrated a promising strategy to achieve rapid electrically actuated SME via the addition of hybrid nanoparticles with self-networking ability in binary PLA/TPU blends over a much larger composition range.
  • 加载中
    1. [1]

      Lendlein, A.; Kelch, S. Shape-memory polymers. 3.0.CO;2-M">Angew. Chem. Int. Ed. 2002, 41(12), 2034  doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M

    2. [2]

      Hu, J. L.; Zhu, Y.; Huang, H. H.; Lu, J. Recent advances in shape-memory polymers, structure; mechanism; functionality; modeling and applications. Prog. Polym. Sci. 2012, 37(12), 1720−1763  doi: 10.1016/j.progpolymsci.2012.06.001

    3. [3]

      Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer, new behavior; enabling materials; and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79−120  doi: 10.1016/j.progpolymsci.2015.04.001

    4. [4]

      Xie, T. Recent advances in polymer shape memory. Polymer 2011, 52(22), 4985−5000  doi: 10.1016/j.polymer.2011.08.003

    5. [5]

      Liu, Y. J.; Lv, H. B.; Lan, X.; Leng, J.; Du, S. Y. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064−2068  doi: 10.1016/j.compscitech.2008.08.016

    6. [6]

      Tang, Z. H.; Sun, D. Q.; Yang, D.; Guo, B. C.; Zhang, L. Q.; Jia, D. M. Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance. Compos. Sci. Technol. 2013, 75, 15−21  doi: 10.1016/j.compscitech.2012.11.019

    7. [7]

      Zhang, Z. X.; Wang, W. Y.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J. Phys. Chem. C 2016, 120(40), 22793−22802  doi: 10.1021/acs.jpcc.6b06345

    8. [8]

      Xiao, Y.; Zhou, S.; Wang, L.; Gong T. Electro-active shape memory properties of poly(epsilon-caprolactone)/ functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2012, 2(12), 3506−3514

    9. [9]

      Leng, J. S.; Huang, W. M.; Lan, X.; Liu, Y. J.; Du, S. Y. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl. Phys. Lett. 2008, 92(20), 204101  doi: 10.1063/1.2931049

    10. [10]

      Yu, K.; Zhang, Z. C.; Liu, Y. J.; Leng J. S. Carbon nanotube chains in a shape memory polymer/carbon black composite, to significantly reduce the electrical resistivity. Appl. Phys. Lett. 2011, 98(7), 074102  doi: 10.1063/1.3556621

    11. [11]

      Wang, X.; Zhao, J.; Chen, M.; Ma, L.; Zhao, X.; Dang, Z. M. Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect. J. Phys. Chem. B 2013, 117(5), 1467−1474  doi: 10.1021/jp3098796

    12. [12]

      Wang, X.; Sparkman, J.; Gou J. H. Electrical actuation and shape memory behavior of polyurethane composites incorporated with printed carbon nanotube layers. Compos. Sci. Technol. 2017, 141, 8−15  doi: 10.1016/j.compscitech.2017.01.002

    13. [13]

      Wang, K.; Zhu, G. M.; Yan, X. G.; Ren, F.; Cui, X. P. Electroactive shape memory cyanate/polybutadiene epoxy composites filled with carbon black. Chinese J. Polym. Sci. 2016, 34(4), 466−474  doi: 10.1007/s10118-016-1766-8

    14. [14]

      Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chinese J. Polym. Sci. 2017, 35(12), 1497−1507  doi: 10.1007/s10118-017-1985-7

    15. [15]

      Meng, H.; Li, G. Q. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54(9), 2199−2221  doi: 10.1016/j.polymer.2013.02.023

    16. [16]

      Meng, Q.; Hu, J. A review of shape memory polymer composites and blends. Compos. Part A Appl. Sci. Manuf. 2009, 40(11), 1661−1672  doi: 10.1016/j.compositesa.2009.08.011

    17. [17]

      You, J. C.; Dong, W. Y.; Zhao, L. P.; Cao, X. J.; Qiu, J. S.; Sheng, W. J.; Li, Y. J. Crystal orientation behavior and shape-memory performance of poly(vinylidene fluoride)/acrylic copolymer blends. J. Phys. Chem. B 2012, 116(4), 1256−1264  doi: 10.1021/jp209116u

    18. [18]

      You, J. C.; Fu, H.; Dong, W. Y.; Zhao, L. P.; Cao, X. J.; Li, Y. J. Shape memory performance of thermoplastic polyvinylidene fluoride/acrylic copolymer blends physically cross-linked by tiny crystals. ACS Appl. Mater. Interfaces 2012, 4(9), 4825−4831  doi: 10.1021/am301161s

    19. [19]

      Zhang, H.; Wang, H. T.; Zhong, W.; Du, Q. G. A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 2009, 50(6), 1596−1601  doi: 10.1016/j.polymer.2009.01.011

    20. [20]

      Kurahashi, E.; Sugimoto, H.; Nakanishi, E.; Nagata, K.; Inomata, K. Shape memory properties of polyurethane/poly(oxyethylene) blends. Soft Matter 2012, 8(2), 496−503  doi: 10.1039/C1SM06585H

    21. [21]

      Yuan, D. S.; Chen, Z. H.; Xu, C. H.; Chen, K. L.; Chen Y. K. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain. Chem. Eng. 2015, 3(11), 2856−2865  doi: 10.1021/acssuschemeng.5b00788

    22. [22]

      Zheng, Y.; Dong, R. Q.; Shen, J. B.; Guo, S. Y. Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone. ACS Appl. Mater. Interfaces 2016, 8(2), 1371−1380  doi: 10.1021/acsami.5b10246

    23. [23]

      Gubbels, F.; Blacher, S.; Vanlathem, E.; Jerome, R.; Deltour, R.; Brouers, F.; Teyssie, P. Design of electrical composites, determining the role of the morphology on the electrical properties of carbon black filled polymer blends. Macromolecules 1995, 28(5), 1559−1566  doi: 10.1021/ma00109a030

    24. [24]

      Wu, G.; Li, B.; Jiang, J. Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer 2010, 51(9), 2077−2083  doi: 10.1016/j.polymer.2010.03.007

    25. [25]

      Xiu, H.; Huang, C. M.; Bai, H. W.; Jiang, J.; Chen, F.; Deng, H.; Zhang, Q.; Fu, Q. Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer 2014, 55(6), 1593−1600  doi: 10.1016/j.polymer.2014.01.057

    26. [26]

      Xiu, H.; Zhou, Y.; Huang, C. M.; Bai, H. W.; Zhang, Q.; Fu, Q. Deep insight into the key role of carbon black self-networking in the formation of co-continuous-like morphology in polylactide/poly(ether)urethane blends. Polymer 2016, 82, 11−21  doi: 10.1016/j.polymer.2015.10.034

    27. [27]

      Odent, J.; Habibi, Y.; Raquez, J. M.; Dubois, P. Ultra-tough polylactide-based materials synergistically designed in the presence of rubbery ε-caprolactone-based copolyester and silica nanoparticles. Compos. Sci. Technol. 2013, 84, 86−91  doi: 10.1016/j.compscitech.2013.05.003

    28. [28]

      Qi, X. D.; Xiu, H.; Wei, Y.; Zhou, Y.; Guo, Y. L.; Huang, R.; Bai, H. W.; Fu, Q. Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos. Sci. Technol. 2017, 139, 8−16  doi: 10.1016/j.compscitech.2016.12.007

    29. [29]

      Sun, Y.; Bao, H. D.; Guo, Z. X.; Yu, J. Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 2009, 42(1), 459−463  doi: 10.1021/ma8023188

    30. [30]

      Ma, P. C.; Liu, M. Y.; Zhang, H.; Wang, S. Q.; Wang, R.; Wang, K.; Wong, Y. K.; Tang, B. Z.; Hong, S. H.; Paik, K. W.; Kim, J. K. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl. Mater. Interfaces 2009, 1(5), 1090−1096  doi: 10.1021/am9000503

    31. [31]

      Chen, J.; Du, X. C.; Zhang, W. B.; Yang, J. H.; Zhang, N.; Huang, T.; Wang; Y. Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Compos. Sci. Technol. 2013, 81, 1−8  doi: 10.1016/j.compscitech.2013.03.014

    32. [32]

      Zou, H.; Wang, K.; Zhang, Q.; Fu, Q. A change of phase morphology in poly(p-phenylene sulfide)/polyamide 66 blends induced by adding multi-walled carbon nanotubes. Polymer 2006, 47(22), 7821−7826  doi: 10.1016/j.polymer.2006.09.008

    33. [33]

      Shi. Y. Y; Zhang, W. B.; Yang J. H.; Huang, T.; Zhang, N.; Wang, Y.; Yuan, G. P.; Zhang, C. L. Super toughening of the poly(L-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Adv. 2013, 3(48), 26271−26282  doi: 10.1039/c3ra43253j

    34. [34]

      Xiao, Y. J.; Wang W. Y.; Lin, T.; Chen, X. J.; Zhang, Y. T.; Yang J. H.; Wang, Y.; Zhou, Z. W. Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/boron nitride composites achieved by adding a few Carbon Nanotubes. J. Phys. Chem. C 2016, 120(12), 6344−6355  doi: 10.1021/acs.jpcc.5b12651

    35. [35]

      He, M. J.; Xiao, W. X.; Xie, H.; Fan, C. J.; Du, L.; Deng, X. Y.; Wang, Y. Z. Facile fabrication of ternary nanocomposites with selective dispersion of multi-walled carbon nanotubes to access multi-stimuli-responsive shape-memory effects. Mater. Chem. Front. 2017, 1, 343−353  doi: 10.1039/C6QM00047A

    36. [36]

      Tang, Z. H.; Kang, H. L.; Wei, Q. Y.; Guo, B. C.; Zhang, L. Q.; Jia, D. M. Incorporation of graphene into polyester/carbon nanofibers composites for better multi-stimuli responsive shape memory performances. Carbon 2013, 64, 487−498  doi: 10.1016/j.carbon.2013.07.103

    37. [37]

      Xu, Z. H.; Zhang, Y. Q.; Wang, Z. G.; Sun, N.; Li, H. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(epsilon-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces 2011, 3(12), 4858−4864  doi: 10.1021/am201355j

  • 加载中
    1. [1]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    2. [2]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    3. [3]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    4. [4]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    5. [5]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    6. [6]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    9. [9]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    10. [10]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    13. [13]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    14. [14]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    17. [17]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    20. [20]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

Metrics
  • PDF Downloads(0)
  • Abstract views(854)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return