-
[1]
Lendlein, A.; Kelch, S. Shape-memory polymers. 3.0.CO;2-M">Angew. Chem. Int. Ed. 2002, 41(12), 2034
doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
-
[2]
Hu, J. L.; Zhu, Y.; Huang, H. H.; Lu, J. Recent advances in shape-memory polymers, structure; mechanism; functionality; modeling and applications. Prog. Polym. Sci. 2012, 37(12), 1720−1763
doi: 10.1016/j.progpolymsci.2012.06.001
-
[3]
Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer, new behavior; enabling materials; and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79−120
doi: 10.1016/j.progpolymsci.2015.04.001
-
[4]
Xie, T. Recent advances in polymer shape memory. Polymer 2011, 52(22), 4985−5000
doi: 10.1016/j.polymer.2011.08.003
-
[5]
Liu, Y. J.; Lv, H. B.; Lan, X.; Leng, J.; Du, S. Y. Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064−2068
doi: 10.1016/j.compscitech.2008.08.016
-
[6]
Tang, Z. H.; Sun, D. Q.; Yang, D.; Guo, B. C.; Zhang, L. Q.; Jia, D. M. Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance. Compos. Sci. Technol. 2013, 75, 15−21
doi: 10.1016/j.compscitech.2012.11.019
-
[7]
Zhang, Z. X.; Wang, W. Y.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J. Phys. Chem. C 2016, 120(40), 22793−22802
doi: 10.1021/acs.jpcc.6b06345
-
[8]
Xiao, Y.; Zhou, S.; Wang, L.; Gong T. Electro-active shape memory properties of poly(epsilon-caprolactone)/ functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2012, 2(12), 3506−3514
-
[9]
Leng, J. S.; Huang, W. M.; Lan, X.; Liu, Y. J.; Du, S. Y. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl. Phys. Lett. 2008, 92(20), 204101
doi: 10.1063/1.2931049
-
[10]
Yu, K.; Zhang, Z. C.; Liu, Y. J.; Leng J. S. Carbon nanotube chains in a shape memory polymer/carbon black composite, to significantly reduce the electrical resistivity. Appl. Phys. Lett. 2011, 98(7), 074102
doi: 10.1063/1.3556621
-
[11]
Wang, X.; Zhao, J.; Chen, M.; Ma, L.; Zhao, X.; Dang, Z. M. Improved self-healing of polyethylene/carbon black nanocomposites by their shape memory effect. J. Phys. Chem. B 2013, 117(5), 1467−1474
doi: 10.1021/jp3098796
-
[12]
Wang, X.; Sparkman, J.; Gou J. H. Electrical actuation and shape memory behavior of polyurethane composites incorporated with printed carbon nanotube layers. Compos. Sci. Technol. 2017, 141, 8−15
doi: 10.1016/j.compscitech.2017.01.002
-
[13]
Wang, K.; Zhu, G. M.; Yan, X. G.; Ren, F.; Cui, X. P. Electroactive shape memory cyanate/polybutadiene epoxy composites filled with carbon black. Chinese J. Polym. Sci. 2016, 34(4), 466−474
doi: 10.1007/s10118-016-1766-8
-
[14]
Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chinese J. Polym. Sci. 2017, 35(12), 1497−1507
doi: 10.1007/s10118-017-1985-7
-
[15]
Meng, H.; Li, G. Q. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54(9), 2199−2221
doi: 10.1016/j.polymer.2013.02.023
-
[16]
Meng, Q.; Hu, J. A review of shape memory polymer composites and blends. Compos. Part A Appl. Sci. Manuf. 2009, 40(11), 1661−1672
doi: 10.1016/j.compositesa.2009.08.011
-
[17]
You, J. C.; Dong, W. Y.; Zhao, L. P.; Cao, X. J.; Qiu, J. S.; Sheng, W. J.; Li, Y. J. Crystal orientation behavior and shape-memory performance of poly(vinylidene fluoride)/acrylic copolymer blends. J. Phys. Chem. B 2012, 116(4), 1256−1264
doi: 10.1021/jp209116u
-
[18]
You, J. C.; Fu, H.; Dong, W. Y.; Zhao, L. P.; Cao, X. J.; Li, Y. J. Shape memory performance of thermoplastic polyvinylidene fluoride/acrylic copolymer blends physically cross-linked by tiny crystals. ACS Appl. Mater. Interfaces 2012, 4(9), 4825−4831
doi: 10.1021/am301161s
-
[19]
Zhang, H.; Wang, H. T.; Zhong, W.; Du, Q. G. A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 2009, 50(6), 1596−1601
doi: 10.1016/j.polymer.2009.01.011
-
[20]
Kurahashi, E.; Sugimoto, H.; Nakanishi, E.; Nagata, K.; Inomata, K. Shape memory properties of polyurethane/poly(oxyethylene) blends. Soft Matter 2012, 8(2), 496−503
doi: 10.1039/C1SM06585H
-
[21]
Yuan, D. S.; Chen, Z. H.; Xu, C. H.; Chen, K. L.; Chen Y. K. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain. Chem. Eng. 2015, 3(11), 2856−2865
doi: 10.1021/acssuschemeng.5b00788
-
[22]
Zheng, Y.; Dong, R. Q.; Shen, J. B.; Guo, S. Y. Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone. ACS Appl. Mater. Interfaces 2016, 8(2), 1371−1380
doi: 10.1021/acsami.5b10246
-
[23]
Gubbels, F.; Blacher, S.; Vanlathem, E.; Jerome, R.; Deltour, R.; Brouers, F.; Teyssie, P. Design of electrical composites, determining the role of the morphology on the electrical properties of carbon black filled polymer blends. Macromolecules 1995, 28(5), 1559−1566
doi: 10.1021/ma00109a030
-
[24]
Wu, G.; Li, B.; Jiang, J. Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer 2010, 51(9), 2077−2083
doi: 10.1016/j.polymer.2010.03.007
-
[25]
Xiu, H.; Huang, C. M.; Bai, H. W.; Jiang, J.; Chen, F.; Deng, H.; Zhang, Q.; Fu, Q. Improving impact toughness of polylactide/poly(ether)urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer 2014, 55(6), 1593−1600
doi: 10.1016/j.polymer.2014.01.057
-
[26]
Xiu, H.; Zhou, Y.; Huang, C. M.; Bai, H. W.; Zhang, Q.; Fu, Q. Deep insight into the key role of carbon black self-networking in the formation of co-continuous-like morphology in polylactide/poly(ether)urethane blends. Polymer 2016, 82, 11−21
doi: 10.1016/j.polymer.2015.10.034
-
[27]
Odent, J.; Habibi, Y.; Raquez, J. M.; Dubois, P. Ultra-tough polylactide-based materials synergistically designed in the presence of rubbery ε-caprolactone-based copolyester and silica nanoparticles. Compos. Sci. Technol. 2013, 84, 86−91
doi: 10.1016/j.compscitech.2013.05.003
-
[28]
Qi, X. D.; Xiu, H.; Wei, Y.; Zhou, Y.; Guo, Y. L.; Huang, R.; Bai, H. W.; Fu, Q. Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos. Sci. Technol. 2017, 139, 8−16
doi: 10.1016/j.compscitech.2016.12.007
-
[29]
Sun, Y.; Bao, H. D.; Guo, Z. X.; Yu, J. Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 2009, 42(1), 459−463
doi: 10.1021/ma8023188
-
[30]
Ma, P. C.; Liu, M. Y.; Zhang, H.; Wang, S. Q.; Wang, R.; Wang, K.; Wong, Y. K.; Tang, B. Z.; Hong, S. H.; Paik, K. W.; Kim, J. K. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl. Mater. Interfaces 2009, 1(5), 1090−1096
doi: 10.1021/am9000503
-
[31]
Chen, J.; Du, X. C.; Zhang, W. B.; Yang, J. H.; Zhang, N.; Huang, T.; Wang; Y. Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Compos. Sci. Technol. 2013, 81, 1−8
doi: 10.1016/j.compscitech.2013.03.014
-
[32]
Zou, H.; Wang, K.; Zhang, Q.; Fu, Q. A change of phase morphology in poly(p-phenylene sulfide)/polyamide 66 blends induced by adding multi-walled carbon nanotubes. Polymer 2006, 47(22), 7821−7826
doi: 10.1016/j.polymer.2006.09.008
-
[33]
Shi. Y. Y; Zhang, W. B.; Yang J. H.; Huang, T.; Zhang, N.; Wang, Y.; Yuan, G. P.; Zhang, C. L. Super toughening of the poly(L-lactide)/thermoplastic polyurethane blends by carbon nanotubes. RSC Adv. 2013, 3(48), 26271−26282
doi: 10.1039/c3ra43253j
-
[34]
Xiao, Y. J.; Wang W. Y.; Lin, T.; Chen, X. J.; Zhang, Y. T.; Yang J. H.; Wang, Y.; Zhou, Z. W. Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/boron nitride composites achieved by adding a few Carbon Nanotubes. J. Phys. Chem. C 2016, 120(12), 6344−6355
doi: 10.1021/acs.jpcc.5b12651
-
[35]
He, M. J.; Xiao, W. X.; Xie, H.; Fan, C. J.; Du, L.; Deng, X. Y.; Wang, Y. Z. Facile fabrication of ternary nanocomposites with selective dispersion of multi-walled carbon nanotubes to access multi-stimuli-responsive shape-memory effects. Mater. Chem. Front. 2017, 1, 343−353
doi: 10.1039/C6QM00047A
-
[36]
Tang, Z. H.; Kang, H. L.; Wei, Q. Y.; Guo, B. C.; Zhang, L. Q.; Jia, D. M. Incorporation of graphene into polyester/carbon nanofibers composites for better multi-stimuli responsive shape memory performances. Carbon 2013, 64, 487−498
doi: 10.1016/j.carbon.2013.07.103
-
[37]
Xu, Z. H.; Zhang, Y. Q.; Wang, Z. G.; Sun, N.; Li, H. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(epsilon-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces 2011, 3(12), 4858−4864
doi: 10.1021/am201355j