Citation: Ya-Hui Lou, Yi-Long Liao, Li Pan, Bin Wang, Yue-Sheng Li, Zhe Ma. Effect of Linear and Ring-like Co-units on the Temperature Dependence of Nucleation and Growth in II-I Phase Transition of Butene-1 Copolymers[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1269-1276. doi: 10.1007/s10118-018-2135-6 shu

Effect of Linear and Ring-like Co-units on the Temperature Dependence of Nucleation and Growth in II-I Phase Transition of Butene-1 Copolymers

  • Corresponding author: Zhe Ma, zhe.ma@tju.edu.cn
  • Received Date: 10 February 2018
    Revised Date: 17 March 2018
    Accepted Date: 19 March 2018
    Available Online: 20 April 2018

  • The phase transition from tetragonal form II to hexagonal form I was studied for the butene-1/ethylene and butene-1/1,5-hexadiene random copolymers, which have comparable molecular weight but distinct linear ethylene and ringlike methylene-1,3-cyclopentane (MCP) structural co-units, respectively. It is known that this solid phase transition follows the nucleation-growth mechanism, so the stepwise annealing protocol was utilized to investigate the influences of co-units on the optimal nucleation and growth temperatures. Compared with optimal nucleation and growth temperatures of −10 and 35 °C, respectively, in polybutene-1 homopolymer, two butene-1/ethylene copolymers with 1.5 mol% and 4.3 mol% co-units have the slightly lower optimal nucleation temperature of −15 °C but much higher optimal growth temperature of 50 °C. Clearly, the effect of ethylene co-unit is more significant on varying optimal temperature for growth than for nucleation. Furthermore, when the incorporated co-unit is ringlike MCP, the optimal nucleation temperature is −15 °C for 2.15 mol% co-units, the same with above BE copolymers, but −13 °C for a very low concentration of 0.65 mol%. Interestingly, the optimal growth temperature of butene-1/1,5-hexadiene copolymers with 0.65 mol%−2.15 mol% MCP co-units increases to 55 °C, which is also independent on co-unit concentration. These obtained values of optimal temperatures provide crucial parameters for rapid II-I phase transition.
  • 加载中
    1. [1]

      Natta, G.; Corradini, P.; Bassi, I. W. Crystal structure of isotactic poly-alpha-butene. II. Nuovo Cimento 1960, 15(1), 52−67  doi: 10.1007/BF02860331

    2. [2]

      Holland, V. F.; Miller, R. L. Isotactic polybutene-1 single crystals: morphology. J. Appl. Phys. 1964, 35(11), 3241−3248  doi: 10.1063/1.1713205

    3. [3]

      Dorset, D. L.; McCourt, M. P.; Kopp, S.; Wittmann, J. C.; Lotz, B. Direct determination of polymer crystal structures by electron crystallography – isotactic poly(1-butene), form (III). Acta Crystallogr., Sect. B: Struct. Sci. 1994, 50(2), 201−208  doi: 10.1107/S0108768193009140

    4. [4]

      Boor, J.; Mitchell, J. C. Apparent nucleation of a crystal-crystal transition in poly-1-butene. J. Polym. Sci. 1962, 62(174), 70−73  doi: 10.1002/pol.1962.1206217427

    5. [5]

      Goldbach, G.; Peitscher, G. Infrared investigations of the polymorphic modifications of polybutene-1. J. Polym. Sci., Part B: Polym. Lett. 1968, 6(11), 783−788  doi: 10.1002/pol.1968.110061105

    6. [6]

      Wang, Y. T.; Liu, P. R.; Lu, Y.; Men, Y. F. Mechanism of polymorph selection during crystallization of random butene-1/ethylene copolymer. Chinese J. Polym. Sci. 2016, 34(8), 1014−1020  doi: 10.1007/s10118-016-1802-8

    7. [7]

      Danusso, F.; Gianotti, G. Isotactic polybutene-1: Formation and transformation of modification 2. Die Makromol. Chem. 1965, 88(1), 149−158  doi: 10.1002/macp.1965.020880110

    8. [8]

      Zhang, B.; Yang, D. C.; Yan, S. K. Direct formation of form I poly(1-butene) single crystals from melt crystallization in ultrathin films. J. Polym. Sci., Part B: Polym. Phys. 2002, 40(23), 2641−2645  doi: 10.1002/(ISSN)1099-0488

    9. [9]

      Ji, Y. X.; Su, F. M.; Cui, K. P.; Huang, N. D.; Qi, Z. M.; Li, L. B. Mixing assisted direct formation of isotactic poly(1-butene) form I′ crystals from blend melt of isotactic poly(1-butene)/polypropylene. Macromolecules 2016, 49(5), 1761−1769  doi: 10.1021/acs.macromol.5b02161

    10. [10]

      Luciani, L.; Seppälä, J.; Löfgren, B. Poly-1-butene: Its preparation, properties and challenges. Prog. Polym. Sci. 1988, 13(1), 37−62  doi: 10.1016/0079-6700(88)90010-X

    11. [11]

      Nakafuku, C.; Miyaki, T. Effect of pressure on the melting and crystallization behaviour of isotactic polybutene-1. Polymer 1983, 24(2), 141−148  doi: 10.1016/0032-3861(83)90124-6

    12. [12]

      Shi, J. Y.; Wu, P. Y.; Li, L.; Liu, T.; Zhao, L. Crystalline transformation of isotactic polybutene-1 in supercritical CO2 studied by in-situ Fourier transform infrared spectroscopy. Polymer 2009, 50(23), 5598−5604  doi: 10.1016/j.polymer.2009.09.078

    13. [13]

      Li, L.; Liu, T.; Zhao, L.; Yuan, W. K. CO2-induced crystal phase transition from form II to I in isotactic poly-1-butene. Macromolecules 2009, 42(6), 2286−2290  doi: 10.1021/ma8025496

    14. [14]

      Xu, Y.; Liu, T.; Li, L.; Li, D. C.; Yuan, W. K.; Zhao, L. Controlling crystal phase transition from form II to I in isotactic poly-1-butene using CO2. Polymer 2012, 53(26), 6102−6111  doi: 10.1016/j.polymer.2012.10.049

    15. [15]

      Liu, Y. P.; Cui, K. P.; Tian, N.; Zhou, W. Q.; Meng, L. P.; Li, L. B.; Ma, Z.; Wang, X. L. Stretch-induced crystal-crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle X-ray scattering study. Macromolecules 2012, 45(6), 2764−2772  doi: 10.1021/ma2026513

    16. [16]

      Chen, W.; Li, X. Y.; Li, H. L.; Su, F. M.; Zhou, W. M.; Li, L. B. Deformation-induced crystal-crystal transition of polybutene-1: an in situ FTIR imaging study. J. Mater. Sci. 2013, 48(14), 4925−4933  doi: 10.1007/s10853-013-7273-1

    17. [17]

      Wang, Z.; Ju, J. Z.; Meng, L. P.; Tian, N.; Chang, J. R.; Yang, H. R.; Ji, Y. X.; Su, F. M.; Li, L. B. Structural and morphological transitions in extension-induced crystallization of poly(1-butene) melt. Soft Matter 2017, 13(19), 3639−3648  doi: 10.1039/C7SM00107J

    18. [18]

      Gianotti, G.; Capizzi, A. Butene-1/propylene copolymers. Influence of the comonomerie units on polymorphism. Die Makromol. Chem. 1969, 124(1), 152−159  doi: 10.1002/macp.1969.021240116

    19. [19]

      Azzurri, F.; Alfonso, G. C.; Gómez, M. A.; Martì, M. C.; Ellis, G.; Marco, C. Polymorphic transformation in isotactic 1-butene/ethylene copolymers. Macromolecules 2004, 37(10), 3755−3762  doi: 10.1021/ma0358327

    20. [20]

      Cavallo, D.; Kanters, M. J. W.; Caelers, H. J. M.; Portale, G.; Govaert, L. E. Kinetics of the Polymorphic Transition in isotactic poly(1-butene) under uniaxial extension. new insights from designed mechanical histories. Macromolecules 2014, 47(9), 3033−3040  doi: 10.1021/ma500281f

    21. [21]

      Jones, A. T. Cocrystallization in copolymers of α-olefins II—Butene-1 copolymers and polybutene type II/I crystal phase transition. Polymer 1966, 7(1), 23−59  doi: 10.1016/S0032-3861(66)80015-0

    22. [22]

      He, L. L.; Wang, B.; Yang, F.; Li, Y. S.; Ma, Z. Featured crystallization polymorphism and memory effect in novel butene-1/1,5-hexadiene copolymers synthesized by post-metallocene hafnium catalyst. Macromolecules 2016, 49(17), 6578−6589  doi: 10.1021/acs.macromol.6b01457

    23. [23]

      Qiao, Y. N.; Wang, Q.; Men, Y. F. Kinetics of nucleation and growth of form II to I polymorphic transition in polybutene-1 as revealed by stepwise annealing. Macromolecules 2016, 49(14), 5126−5136  doi: 10.1021/acs.macromol.6b00862

    24. [24]

      Wang, B.; Wang, Y. X.; Cui, J.; Long, Y. Y.; Li, Y. G.; Yuan, X. Y.; Li, Y. S. Cyclopolymerization of Si-containing α,ω-diolefins by a pyridylamidohafnium catalyst with high cyclization selectivity and stereoselectivity. Macromolecules 2014, 47(19), 6627−6634  doi: 10.1021/ma501460f

    25. [25]

      Rubin, I. D. Relative stabilities of polymorphs of polybutene-1 obtained from the melt. J. Polym. Sci., Part B: Polym. Lett. 1964, 2(7), 747−749  doi: 10.1002/pol.1964.110020717

    26. [26]

      Qiao, Y.; Wang, H.; Men, Y. Retardance of form II to form I transition in polybutene-1 at late stage: a proposal of a new mechanism. Macromolecules 2018, DOI: 10.1021/acs. macromol.7b02481  doi: 10.1021/acs.macromol.7b02481

    27. [27]

      Qiao, Y. N.; Men, Y. F. Intercrystalline links determined kinetics of form II to I polymorphic transition in polybutene-1. Macromolecules 2017, 50(14), 5490−5497  doi: 10.1021/acs.macromol.7b00771

    28. [28]

      Di Lorenzo, M. L.; Androsch, R.; Righetti, M. C. The irreversible form II to form I transformation in random butene-1/ethylene copolymers. Eur. Polym. J. 2015, 67(1), 264−273  doi: 10.1016/j.eurpolymj.2015.04.002

  • 加载中
    1. [1]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    2. [2]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    3. [3]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    4. [4]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    5. [5]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    6. [6]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    7. [7]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    8. [8]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    9. [9]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    10. [10]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    11. [11]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    12. [12]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    13. [13]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    14. [14]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    15. [15]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    16. [16]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    17. [17]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    18. [18]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    19. [19]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    20. [20]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return