Citation: Shui-Qin Pu, Shuo Guo, Ke Wang, Qiang Fu. Largely Improved Stretch Ductility and β-Form Room-temperature Durability of Poly(vinylidene fluoride) by Incorporating Aliphatic Polyketone[J]. Chinese Journal of Polymer Science, ;2018, 36(11): 1277-1285. doi: 10.1007/s10118-018-2134-7 shu

Largely Improved Stretch Ductility and β-Form Room-temperature Durability of Poly(vinylidene fluoride) by Incorporating Aliphatic Polyketone

  • In this study, we attempt to prepare a new blending system of poly(vinylidene fluoride) (PVDF) and aliphatic polyketone (POK) by melt compounding. The latter is a promising engineering plastic with comprehensive mechanical performances. When POK acted as minor phase to homogeneously disperse in and intimately contact with PVDF matrix, the brittle tensile behavior of neat PVDF transferred into a remarkably flexible manner (the elongation at break increased for 20 times), and more interestingly, the room-temperature durability of β-form PVDF in the uniaxially drawn blend film was obviously better than that in the neat PVDF film. Fourier transform infrared spectroscopy revealed that specific dipole interaction existed between CF2 group of PVDF and C=O group of POK. The intermolecular dipolar interaction induced good compatibility in the PVDF/POK blends, as evidently proved by fine two-phase morphology and decreased melting points of POK crystals. Therefore, the good compatibility and interfacial enhancement are responsible for the improvement of the stretch ductility and β-form room-temperature durability of the PVDF/POK blends.
  • 加载中
    1. [1]

      Salimi, A.; Yousefi, A. A. FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699−704  doi: 10.1016/S0142-9418(03)00003-5

    2. [2]

      Giannetti, E. Semi-crystalline fluorinated polymers. Polym. Int. 2001, 50, 10−26  doi: 10.1002/(ISSN)1097-0126

    3. [3]

      Martins, P.; Caparros, C.; Gonçalves, R.; Martins, P. M.; Benelmekki, M.; Botelho, G.; Lanceros, M. S. Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J. Phys. Chem. C 2012, 116, 15790−5794  doi: 10.1021/jp3038768

    4. [4]

      Ribeiro, C.; Sencadas, V.; Ribelles, J. L. G.; Senentxu, L. M. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft. Mater. 2010, 8(3), 8274−287

    5. [5]

      Fukada, E. History and recent progress in piezoelectric polymers. Ieee. T. Ultrason. Ferr. 2000, 47(6), 1277−1290  doi: 10.1109/58.883516

    6. [6]

      Meng, N.; Zhu, X. J.; Mao, R.; Reece, M. J.; Bilotti, E. Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. J. Mater. Chem. C 2017, 5, 3296−3305  doi: 10.1039/C7TC00162B

    7. [7]

      Liu, F.; Awanis, Hashim. N.; Liu, Y.; Moghareh, M. R.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1−27  doi: 10.1016/j.memsci.2011.03.014

    8. [8]

      Bachmann, M. A.; Lando, J. B. A reexamination of the crystal structure of phase-II of poly(vinylidene fluoride). Macromolecules 1981, 14, 40−46  doi: 10.1021/ma50002a006

    9. [9]

      Pei, Y.; Zeng, X. C. Elastic properties of poly(vinyldene fluoride) (PVDF) crystals: A density functional theory study. J. Appl. Phys. 2011, 109, 0935141−0935147  doi: 10.1063/1.3574653

    10. [10]

      Shah, D.; Maiti, P.; Gunn, E.; Schmidt, D. F.; Jiang, D. D.; Batt, C. A.; Giannelis, E. P. Dramatic enhancements in toughness of poly(vinylidene) fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv. Mater. 2004, 16(14), 1173−1177  doi: 10.1002/(ISSN)1521-4095

    11. [11]

      Atorngitjawat, P. Effects of processing conditions and crystallization on dynamic relaxations in semicrystalline poly(vinylidene fluoride) films. Macromol. Res. 2017, 25(5), 391−399  doi: 10.1007/s13233-017-5060-6

    12. [12]

      Sencadas, V.; Gregorio, R.; M'endez, S. L. α to β phase transformation and microstructural changes of PVDF films induced by uniaxial stretch. J. Macromol. Sci. B 2009, 48, 514−525  doi: 10.1080/00222340902837527

    13. [13]

      Liu, G. M.; Schneider, K.; Zheng, L. C.; Zhang, X. Q.; Li, C. C.; Stamm, M.; Wang, D. J. Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studied by in-situ X-ray scattering. Polymer 2014, 55, 2588−2596  doi: 10.1016/j.polymer.2014.03.055

    14. [14]

      Frübing, P.; Wang, F. P.; Wegener, M. Relaxation processes and structural transitions in stretched films of polyvinylidene fluoride and its copolymer with hexafluoropropylene. Appl. Phys. A 2012, 107, 603−611  doi: 10.1007/s00339-012-6838-1

    15. [15]

      Jungnickel, B. J. In "Ferroelectric polymers: chemistry, physics, and applications". Nalwa, H. S. (Eds.), Marcel dekker, New York, 1995, Chapter 4.

    16. [16]

      Liu, D. F.; Li, W.; Zhang, N.; Huang, T.; Yang, J. H.; Wang, Y. Graphite oxide-driven miscibility in PVDF/PMMA blends: Assessment through dynamic rheology method. Eur. Polym. J. 2017, 96, 232−247  doi: 10.1016/j.eurpolymj.2017.09.018

    17. [17]

      Wang, T. C.; Li, H. H.; Wang, F.; Schultz, J. M.; Yan, S. Morphologies and deformation behavior of poly(vinylidene fluoride)/poly(butylene succinate) blends with variety of blend ratios and under different preparation conditions. Polym. Chem. 2011, 2, 1688−1698  doi: 10.1039/c1py00134e

    18. [18]

      Kaito, A. Unique orientation textures formed in miscible blends of poly(vinylidene fluoride) and poly[(R)-3-hydroxybutyrate]. Polymer 2006, 47, 3548−3556  doi: 10.1016/j.polymer.2006.03.066

    19. [19]

      Li, Y. J.; Kaito, A.; Horiuchi, S. Biaxially oriented lamellar morphology formed by the confined crystallization of poly(1,4-butylene succinate) in the oriented blend with poly(vinylidene fluoride). Macromolecules 2004, 37, 2119−2127  doi: 10.1021/ma0355047

    20. [20]

      Liu, Z. H.; Marechal, P.; Jerome, R. Blends of poly(vinylidene fluoride) with polyamide 6: interfacial adhesion, morphology and mechanical properties. Polymer 1998, 39, 1779−1785  doi: 10.1016/S0032-3861(97)00222-X

    21. [21]

      Gao. Q.; Scheinbeim, J. I. Dipolar intermolecular interactions, structural development, and electromechanical properties in ferroelectric polymer blends of nylon-11 and poly(vinylidene fluoride). Macromolecules 2000, 33, 7564−7572  doi: 10.1021/ma000111i

    22. [22]

      Gao, Q.; Scheinbeim, J. I.; Newman, B. A. Ferroelectric properties of nylon 11 and poly(vinylidene fluoride) blends. J. Polym. Sci. B 1999, 32, 3217−3228  doi: 10.1002/(SICI)1099-0488(19991115)37:22<3217::AID-POLB6>3.0.CO;2-R

    23. [23]

      Shimizu, H.; Li, Y. J.; Kaito, A.; Sano, H. Formation of nanostructured PVDF/PA11 blends using high shear processing. Macromolecules 2005, 38, 7880−7883  doi: 10.1021/ma051395f

    24. [24]

      Li, Y. J.; Kaito, A. Mechanistic investigation into the unique orientation textures of poly(vinylidene fluoride) in blends with nylon 11. Macromol. Rapid Commun. 2003, 24, 603−608  doi: 10.1002/marc.200350001

    25. [25]

      Kaito, A.; Iwakura, Y.; Li, Y. J.; Nakayama, K.; Shimizu, H. Unique orientation textures induced by confined crystal growth of poly(vinylidene fluoride) in oriented blends with polyamide 6. Macromol. Chem. Phys. 2007, 208, 504−513  doi: 10.1002/(ISSN)1521-3935

    26. [26]

      Li, Y. J.; Kaito, A. Crystallization and orientation behaviors of poly(vinylidene fluoride) in the oriented blend with nylon 11. Polymer 2003, 44, 8167−8176  doi: 10.1016/j.polymer.2003.10.014

    27. [27]

      Sommazzi, A.; Garbassi, F. Olefin-carbon monoxide copolymers. Prog. Poiym. Sci. 1997, 22, 1547−1605  doi: 10.1016/S0079-6700(97)00009-9

    28. [28]

      Pilz, G.; Guttmann, P. Dynamic mechanical profile of polyketone compared to conventional technical plastics. AIP Conference Proceedings 2016, 1779, 0700081−0700085

    29. [29]

      Sajkiewicz, P.; Wasiak, A.; Goclowski, Z. Phase transitions during stretching of poly(vinylidene fuoride). Eur. Polym. J. 1999, 35, 423−429  doi: 10.1016/S0014-3057(98)00136-0

    30. [30]

      Martins, P.; Lopes, A. C.; Mendez, S. L. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683−706  doi: 10.1016/j.progpolymsci.2013.07.006

    31. [31]

      Gregorio, R. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride). J. Mater. Sci. 1999, 34, 4489−4500  doi: 10.1023/A:1004689205706

    32. [32]

      Silva, A. B.; Wisniewski, C.; Esteves, J. V. A.; Gregorio, R. Jr. Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films. J. Mater. Sci. 2010, 45, 4206−4215  doi: 10.1007/s10853-010-4515-3

    33. [33]

      Gregorio, R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272−3279  doi: 10.1002/(ISSN)1097-4628

    34. [34]

      Huang, R.; Wang, G.; Guo, S.; Wang, K.; Fu, Q. Crystallographic features of poly(vinylidene fluoride) film upon an attractive substrate of KBr. Phys. Chem. Chem. Phys. 2017, 19, 27828−27838  doi: 10.1039/C7CP04741J

  • 加载中
    1. [1]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    2. [2]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    3. [3]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    4. [4]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    5. [5]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    6. [6]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    7. [7]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    8. [8]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    9. [9]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    10. [10]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    11. [11]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    12. [12]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

Metrics
  • PDF Downloads(0)
  • Abstract views(827)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return