Citation: Vadim V. Annenkov, Uma Maheswari Krishnan, Viktor A. Pal'shin, Stanislav N. Zelinskiy, Gayathri Kandasamy, Elena N. Danilovtseva. Bioinspired Water-soluble Polymers with Grafted Polyamine Chains: Synthesis and Complexation with Oligonucleotides[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1114-1122. doi: 10.1007/s10118-018-2133-8 shu

Bioinspired Water-soluble Polymers with Grafted Polyamine Chains: Synthesis and Complexation with Oligonucleotides

  • Corresponding author: Vadim V. Annenkov, annenkov@lin.irk.ru
  • Received Date: 18 January 2018
    Revised Date: 25 February 2018
    Accepted Date: 3 March 2018
    Available Online: 19 April 2018

  • The siliceous frustules of diatom algae contain complex proteins known as silaffins, which consist of a peptide chain with grafted polyamine chains. These polyamines contain twenty or more nitrogen atoms with trimethylene groups between the nitrogens. We synthesized a set of polymers containing grafted long-chain polyamine fragments by using acryloyl chloride (ACh) polymers and activated acrylic acid copolymers as the starting materials. The new polymers contained 0.05 mol%−3.2 mol% of polyamine chains, which corresponded to 0.06−3.56 mmol·g−1 amine groups. The new amine-containing polymers formed complexes with short (19-21-mer) deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) strands, and these complexes penetrated into model yeast cells and A549 lung cancer cell. This study demonstrates the potential of these species based on long-chain polyamines to serve as novel gene delivery systems.
  • 加载中
    1. [1]

      Kadajji, V. G.; Betageri, G. V. Water soluble polymers for pharmaceutical applications. Polymers 2011, 3, 1972−2009  doi: 10.3390/polym3041972

    2. [2]

      McCormick, C., in "Water-Soluble Polymers. Chapter 1", eds by Shalaby, S.; McCormick, C.; Butler, G., American Chemical Society, Washington, 1991, p. 2-24.

    3. [3]

      Srivastava, A.; Yadav, T.; Sharma, S.; Nayak, A.; Kumari, A.; Mishra, N. J. Polymers in drug delivery. J. Biosci. Med. 2016, 4, 69−84

    4. [4]

      Kroger, N.; Deutzmann, R.; Sumper, M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 1999, 286(5442), 1129−1132  doi: 10.1126/science.286.5442.1129

    5. [5]

      Kroger, N.; Deutzmann, R.; Bergsdorf, C.; Sumper, M. Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14133−14138  doi: 10.1073/pnas.260496497

    6. [6]

      Dubruel, P.; Schacht, E. Vinyl polymers as non-viral gene delivery carriers: current status and prospects. Macromol. Biosci. 2006, 6(10), 789−810  doi: 10.1002/(ISSN)1616-5195

    7. [7]

      Amreddy, N.; Babu, A.; Muralidharan, R.; Munshi, A.; Ramesh, R. Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. Top. Curr. Chem. 2017, 375(35), 1−23  doi: 10.1007/s41061-017-0128-5

    8. [8]

      Zhang, P.; Wagner, E. History of polymeric gene delivery systems. Top. Curr. Chem. (Cham.) 2017, 375(26), 1−39  doi: 10.1007/s41061-017-0112-0

    9. [9]

      Innus, M. Antisense cancer therapy: do antisense oligonucleotides hold promise as a cure for cancer? Chem. Sci. J. 2017, 8(2), e117  doi: 10.4172/2150-3494.1000e117

    10. [10]

      Zaimy, M.; Saffarzadeh, N.; Mohammadi, A.; Pourghadamyari, H.; Izadi, P.; Sarli, A.; Moghaddam, L.; Paschepari, S.; Azizi, H.; Torkamandi, S.; Tavakkoly-Bazzaz, J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017, 24, 233−243  doi: 10.1038/cgt.2017.16

    11. [11]

      Gurav, B.; Srinivasan, G. Antisense oligonucleotides as therapeutics and their delivery. Curr. Sci. 2017, 1(12), 490−498  doi: 10.18520/cs/v112/i03/490-498

    12. [12]

      Hu, X.; Liu, S. Recent advances towards fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures. Dalton Trans. 2015, 44, 3904−3922  doi: 10.1039/C4DT03609C

    13. [13]

      Deng, Z.; Qian, Y.; Yu, Y.; Liu, G.; Hu, J.; Zhang, G.; Liu, S. J. Am. Chem. Soc. 2016, 138, 10452−10466  doi: 10.1021/jacs.6b04115

    14. [14]

      Annenkov, V. V.; Danilovtseva, E. N.; Pal'shin, V. A.; Aseyev, V. O.; Petrov, A. K.; Kozlov, A. S.; Patwardhan, S. V.; Perry, C. C. Poly (vinyl amine)-silica composite nanoparticles: models of the silicic acid cytoplasmic pool and as a silica precursor for composite materials formation. Biomacromolecules 2011, 12, 1772−1780  doi: 10.1021/bm2001457

    15. [15]

      Annenkov, V. V.; Zelinskiy, S. N.; Danilovtseva, E. N.; Perry, C. C. Synthesis of biomimetic polyamines. ARKIVOC 2009, xiii, 116-130.

    16. [16]

      Lin, L.; Guo, Z. P.; Chen, J.; Tian, H. Y.; Chen X. S. Synthesis and characterization of polyphenylalanine grafted low molecular weight PEI as efficient gene carriers. Acta Polymerica Sinica (in Chinese) 2017, (2), 321−328  doi: 10.11777/j.issn1000-3304.2017.16277

    17. [17]

      Pavlov, G. M.; Korneeva, E. V.; Ebel, C.; Gavrilova, I. I.; Nesterova, N. A.; Panarin, E. F. Hydrodynamic behavior, molecular mass and conformational parameters of poly(vinylformamide) molecules. Polym. Sci. A 2004, 46(10), 1063−1067

    18. [18]

      Buruiana, E. C.; Buruiana, T.; Hahui, L. Preparation and characterization of new optically active poly(N-acryloyl chloride) functionalized with (S)-phenylalanine and pendant pyrene. J. Photochem. Photobiol. A Chem. 2007, 189, 65−72  doi: 10.1016/j.jphotochem.2007.01.008

    19. [19]

      Newman, S.; Krigbaum, W. R.; Laugier, C.; Flory, P. J. Molecular dimensions in relation to intrinsic viscositie. J. Polym. Sci., Part A: Polym. Chem. 1954, 14(77), 451−462  doi: 10.1002/pol.1954.120147704

    20. [20]

      Nazhmiddinov, S. H.; Turayev, A. S.; Usmanov, K. H. U.; Bazarbayev, A. Copolymerization of acrylil and methacrylil chlorides with vinyl compounds. J. Polym. Sci. Symp. 1973, 42(3), 1591−1599

    21. [21]

      Liu, Q.; Zhu, M. Determination of molar ratio of primary secondary and tertiary amines in polymers by applying derivatization and NMR spectroscopy. Polym. Test. 2016, 56, 174−179  doi: 10.1016/j.polymertesting.2016.10.013

    22. [22]

      Nikolova, M.; Savova, I.; Marinov, M. An optimised method for investigation of the yeast viability by means of fluorescent microscopy. J. Cultur. Collect. 2002, 3(1), 66−71

    23. [23]

      Kwolek-Mirek, M.; Zadrag-Tecza, R. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res. 2014, 14(7), 1068−1079  doi: 10.1111/1567-1364.12202

    24. [24]

      Takei, Y.; Kadomatsu, K.; Yuzawa, Y.; Matsuo, S.; Muramatsu, T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004, 64(10), 3365−3370  doi: 10.1158/0008-5472.CAN-03-2682

    25. [25]

      Cerny, L. C.; Helminiak, T. E.; Meier, J. F. Osmotic pressures of aqueous polyvinylpyrrolidone solutions. J. Polym. Sci. 1960, 44, 539−545  doi: 10.1002/pol.1960.1204414425

    26. [26]

      Gordon, A. and Ford, R., "The chemist's companion: a handbook of practical data, techniques, and references", Wiley, New York, 1972, p. 560

    27. [27]

      Smith, A., "Applied infrared spectroscopy: fundamentals, techniques, and analytical problem-solving", Wiley, New York, 1979, p. 336

  • 加载中
    1. [1]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    2. [2]

      Ling YangMin RenJie WangLiming HeShanshan WuShuai YangWei ZhaoHao ChengXiaoming ZhouMaling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822

    3. [3]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    4. [4]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    5. [5]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    6. [6]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    7. [7]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    8. [8]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    9. [9]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    10. [10]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    11. [11]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    12. [12]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    13. [13]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    14. [14]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    15. [15]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    16. [16]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    17. [17]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    18. [18]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    19. [19]

      Xue ZhengJizhen XieXing ZhangWeiting SunHeyang ZhaoYantuan LiCheng Wang . Corrigendum to "An overview of polymeric nanomicelles in clinical trials and on the market" [Chinese Chemical Letters 32 (2021) 243-257]. Chinese Chemical Letters, 2025, 36(2): 110545-. doi: 10.1016/j.cclet.2024.110545

    20. [20]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

Metrics
  • PDF Downloads(0)
  • Abstract views(778)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return