Citation: Deng Pan, Zhao-Yan Sun. Diffusion and Relaxation Dynamics of Supercooled Polymer Melts[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1187-1194. doi: 10.1007/s10118-018-2132-9 shu

Diffusion and Relaxation Dynamics of Supercooled Polymer Melts

  • Corresponding author: Zhao-Yan Sun, zysun@ciac.ac.cn
  • Received Date: 12 January 2018
    Revised Date: 9 February 2018
    Accepted Date: 26 February 2018
    Available Online: 16 April 2018

  • The dynamic properties of polymer melts are investigated in the range of normal liquid regime to the supercooled liquid regime. The polymer is modeled as a coarse-grained bead-spring model with chain length ranging from 5 to 160. The mean squared displacement and non-Gaussian parameter are used to describe the self diffusion of polymer beads. We find slow dynamics with decreasing temperature and increasing chain length. The time evolution of non-Gaussian parameters shows two peaks (or one peak one shoulder) in the α-relaxation time, τα, regime and sub-diffusion time regime, respectively, where the first primary peak indicates the dynamic heterogeneity stemmed from the motion of beads, and the secondary peak is the result of correlated motion along a polymer chain. Moreover, the relaxation of polymer beads shows clear two-step decay in supercooled melts and the dynamics shows growing heterogeneity with decreasing temperature. As chain length is increased, a peak of the dynamic susceptibility occurs, and the peak height, χ \begin{document}$_4^*$\end{document} , increases and then reaches a plateau. The curves of the height of the first peak of \begin{document}$\textit {α}_2^{} $\end{document} , \begin{document}$\textit {α}_2^*$\end{document} , versus \begin{document}$ {\textit {τ}_{\textit {α}}}$\end{document} and the curves of χ \begin{document}$_4^*$\end{document} versus \begin{document}$ {\textit {τ}_{\textit {α}}}$\end{document} follow two master curves for different chain lengths. Our results indicate the similarity of dynamic heterogeneity dominated by the motion of single bead even the chain length is different. It is interesting to find that the Stokes-Einstein (SE) relation between \begin{document}$ {\textit {τ}_{\textit {α}}}$\end{document} and diffusion coefficient D, D~τ \begin{document}${_{q}^{-1}}$\end{document} , is highly length-scale dependent. The SE relation breaks down in both normal melts regime and supercooled regime at large magnitude of wave vectors, attributed to the non-Brownian motion arising from the chain connectivity and growing heterogeneity due to supercooling. However, the SE relation is reconstructed when the probing length scale is large (at small magnitude of wave vectors). Our results show a hierarchical physical picture of the supercooled polymeric dynamics.
  • 加载中
    1. [1]

      Colmenero, J. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers J. Phys.: Condens. Matter 2015, 27, 103101  doi: 10.1088/0953-8984/27/10/103101

    2. [2]

      Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 1953, 21, 1272−1280  doi: 10.1063/1.1699180

    3. [3]

      de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572−579  doi: 10.1063/1.1675789

    4. [4]

      Doi, M. and Edwards, S. F. " The theory of polymer dynamics”, Oxford University Press, 1986.

    5. [5]

      de Gennes, P. G. " Scaling concepts in polymer physic”, Cornell University Press, 1979.

    6. [6]

      Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000, 88, 3113−3157  doi: 10.1063/1.1286035

    7. [7]

      Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 2009, 476, 51−124  doi: 10.1016/j.physrep.2009.03.003

    8. [8]

      Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 2011, 83, 587−645  doi: 10.1103/RevModPhys.83.587

    9. [9]

      Ediger, M. D.; Harrowell, P. Perspective: Supercooled liquids and glasses. J. Chem. Phys. 2012, 137, 080901  doi: 10.1063/1.4747326

    10. [10]

      Biroli, G.; Garrahan, J. P. Perspective: The glass transition. J. Chem. Phys. 2013, 138, 12A301  doi: 10.1063/1.4795539

    11. [11]

      Cangialosi, D. Dynamics and thermodynamics of polymer glasses. J. Phys.: Condens. Matter 2014, 26, 153101  doi: 10.1088/0953-8984/26/15/153101

    12. [12]

      Götze, W. " Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory”, Oxford University Press 2008.

    13. [13]

      Chong, S. H.; Fuchs, M. Mode-coupling theory for structural and conformational dynamics of polymer melts. Phys. Rev. Lett. 2002, 88, 185702  doi: 10.1103/PhysRevLett.88.185702

    14. [14]

      Chong, S. H.; Aichele, M.; Meyer, H.; Fuchs, M.; Baschnagel, J. Structural and conformational dynamics of supercooled polymer melts: insights from first-principles theory and simulations. Phys. Rev. E 2007, 76, 051806  doi: 10.1103/PhysRevE.76.051806

    15. [15]

      Bennemann, C.; Baschnagela, J.; Paul, W. Molecular-dynamics simulation of a glassy polymer melt: Incoherent scattering function. Eur. Phys. J. B 1999, 10, 323−334  doi: 10.1007/s100510050861

    16. [16]

      Aichele, M.; Baschnagel, J. Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions-Part I: Dynamics in the β-relaxation regime. Eur. Phys. J. E 2001, 5, 229−243  doi: 10.1007/s101890170078

    17. [17]

      Aichele, M.; Baschnagel, J. Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions-Part II: Dynamics in the α-relaxation regime. Eur. Phys. J. E 2001, 5, 245−256  doi: 10.1007/s101890170079

    18. [18]

      Frey, S.; Weysser, F.; Meyer, H.; Farago, J.; Fuchs, M.; Baschnagel, J. Simulated glass-forming polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory analysis. Eur. Phys. J. E 2015, 38, 11  doi: 10.1140/epje/i2015-15011-x

    19. [19]

      Bernabei, M.; Moreno, A. J.; Zaccarelli, E.; Sciortino, F.; Colmenero, J. From caging to Rouse dynamics in polymer melts with intramolecular barriers: A critical test of the mode coupling theory. J. Chem. Phys. 2011, 134, 024523  doi: 10.1063/1.3525147

    20. [20]

      Colmenero, J.; Narros, A.; Alvarez, F.; Arbe, A.; Moreno, A. J. Atomic motions in the αβ-region of glass-forming polymers: molecular versus mode coupling theory approach. J. Phys.: Condens. Matter 2007, 19, 205127  doi: 10.1088/0953-8984/19/20/205127

    21. [21]

      Khairy, Y.; Alvarez, F.; Arbe, A.; Colmenero, J. Applicability of mode-coupling theory to polyisobutylene: A molecular dynamics simulation study. Phys. Rev. E 2013, 88, 042302

    22. [22]

      Frick, B.; Zorn, R.; Richter, D.; Farago, B. Investigation of the glass transition in polymers under the aspect of mode coupling predictions. J. Non-cryst. Solids 1991, 131, 169−176

    23. [23]

      Zorn, R.; Richter, D.; Frick, B.; Farago, B. Neutron scattering experiments on the glass transition of polymers. Physica A 1993, 201, 52−66  doi: 10.1016/0378-4371(93)90399-O

    24. [24]

      Bergman, R.; Börjesson, L.; Torell, L. M.; Fontana, A. Dynamics around the liquid-glass transition in poly(propylene-glycol) investigated by wide-frequency-range light-scattering techniques. Phys. Rev. B 1997, 56, 11619−11628  doi: 10.1103/PhysRevB.56.11619

    25. [25]

      Capponi, S.; Arbe, A.; Alvarez, F.; Colmenero, J.; Frick, B.; Embs, J. P. Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. J. Chem. Phys. 2016, 131, 204901

    26. [26]

      Zhang, B.; Li, H.; Li, J.; Chen, K.; Tian, W.; Ma, Y. The unique role of bond length in the glassy dynamics of colloidal polymers. Soft Matter 2016, 12, 8104−8111  doi: 10.1039/C6SM01386D

    27. [27]

      Li, J.; Zhang, B.; Li, H.; Chen, K.; Tian, W.; Tong, P. Glassy dynamics of model colloidal polymers: The effect of " monomer” size. J. Chem. Phys. 2016, 144, 204509  doi: 10.1063/1.4952605

    28. [28]

      Bernabei, M.; Moreno, A. J.; Colmenero, J. Dynamic arrest in polymer melts: competition between packing and intramolecular barriers. Phys. Rev. Lett. 2008, 101, 255701  doi: 10.1103/PhysRevLett.101.255701

    29. [29]

      Yamamoto, R.; Onuki, A. Heterogeneous diffusion in highly supercooled liquids. Phys. Rev. Lett. 1998, 81, 4915−4918  doi: 10.1103/PhysRevLett.81.4915

    30. [30]

      Jung, Y. J.; Garrahan, J. P.; Chandler, D. Excitation lines and the breakdown of Stokes-Einstein relations in supercooled liquids. Phys. Rev. E 2004, 69, 061205  doi: 10.1103/PhysRevE.69.061205

    31. [31]

      Ikeda, A.; Miyazaki, K. Glass transition of the monodisperse gaussian core model. Phys. Rev. Lett. 2011, 106, 015701  doi: 10.1103/PhysRevLett.106.015701

    32. [32]

      Li, Y. W.; Zhu, Y. L.; Sun Z. Y. Decoupling of relaxation and diffusion in random pinning glass-forming liquids. J. Chem. Phys. 2015, 142, 124507  doi: 10.1063/1.4916208

    33. [33]

      Chen, S. H.; Mallamace, F.; Mou, C. Y.; Broccio, M.; Corsaro, C.; Faraone, A.; Liu, L. The violation of the Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 12974−12978  doi: 10.1073/pnas.0603253103

    34. [34]

      Xu, L.; Mallamace, F.; Yan, Z.; Starr, F. W.; Buldyrev, S. V.; Stanley, H. E. Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat. Phys. 2009, 5, 565−569  doi: 10.1038/nphys1328

    35. [35]

      Flenner, E.; Szamel, G. Dynamic heterogeneities above and below the mode-coupling temperature: Evidence of a dynamic crossover. J. Chem. Phys. 2013, 138, 12A523  doi: 10.1063/1.4773321

    36. [36]

      Berthier, L. Time and length scales in supercooled liquids. Phys. Rev. E 2004, 69, 020201  doi: 10.1103/PhysRevE.69.020201

    37. [37]

      Kawasaki, T.; Onuki, A. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: Breakdown of the Stokes-Einstein relation. Phys. Rev. E 2013, 87, 012312

    38. [38]

      Shi, Z.; Debenedetti, P. G.; Stillinger, F. H. Relaxation processes in liquids: Variations on a theme by Stokes and Einstein. J. Chem. Phys. 2013, 138, 12A526  doi: 10.1063/1.4775741

    39. [39]

      Sengupta, S.; Karmakar, S.; Dasgupta, C.; Sastry, S. Breakdown of the Stokes-Einstein relation in two, three, and four dimensions. J. Chem. Phys. 2013, 138, 12A548  doi: 10.1063/1.4792356

    40. [40]

      Sengupta, S.; Karmakar, S. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids. J. Chem. Phys. 2014, 140, 224505  doi: 10.1063/1.4882066

    41. [41]

      Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 2000, 51, 99−128  doi: 10.1146/annurev.physchem.51.1.99

    42. [42]

      Baschnagel, J.; Varnik, F. Computer simulations of supercooled polymer melts in the bulk and in-confined geometry. J. Phys.: Condens. Matter 2005, 17, R851−R953  doi: 10.1088/0953-8984/17/32/R02

    43. [43]

      Lang, R. J.; Simmons, D. S. Interfacial dynamic length scales in the glass transition of a model freestanding polymer film and their connection to cooperative motion. Macromolecules 2013, 46, 9818−9825  doi: 10.1021/ma401525q

    44. [44]

      Merling, W. L.; Mileski, J. B.; Douglas, J. F.; Simmons, D. S. The glass transition of a single macromolecule. Macromolecules 2016, 49, 7597−7604  doi: 10.1021/acs.macromol.6b01461

    45. [45]

      Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057−5086  doi: 10.1063/1.458541

    46. [46]

      Liu, Y.; Tuckerman, M. E. Generalized gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble. J. Chem. Phys. 2000, 112, 1685−1700  doi: 10.1063/1.480769

    47. [47]

      Bennemann, C.; Paul, W.; Binder, K.; Dunweg, B. Molecular-dynamics simulations of the thermal glass transition in polymer melts α-relaxation behavior. Phys. Rev. E 1998, 57, 843−851  doi: 10.1103/PhysRevE.57.843

    48. [48]

      Aichele, M.; Gebremichael, Y.; Starr, F. W.; Baschnagel, J.; Glotzer, S. C. Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt. J. Chem. Phys. 2003, 199, 5290−5304

    49. [49]

      Wang, Z.; Likhtman, A. E.; Larson, R. G. Segmental dynamics in entangled linear polymer melts. Macromolecules 2012, 45, 3557−3570  doi: 10.1021/ma202759v

    50. [50]

      Kob, W.; Andersen, H. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility. Phys. Rev. E 1995, 52, 4134−4153  doi: 10.1103/PhysRevE.52.4134

    51. [51]

      Bennemann, C.; Paul, W.; Baschnagel, J.; Binder, K. Investigating the influence of different thermodynamic paths on the structural relaxation in a glass-forming polymer melt. J. Phys.: Condens. Matter 1999, 11, 2179−2192  doi: 10.1088/0953-8984/11/10/005

    52. [52]

      Bennemann, C.; Baschnagel, J.; Paul, W.; Binder, K. Molecular-dynamics simulation of a glassy polymer melt Rouse model and cage effect. Comput. Theor. Polym. Sci. 1999, 9, 217−226  doi: 10.1016/S1089-3156(99)00008-2

    53. [53]

      Binder, K. and Kob, W. " Glassy materials and disordered solids: An introduction to their statistical mechanics”, World Scientific, 2005.

    54. [54]

      Toninelli, C.; Wyart, M.; Berthier, L.; Biroli, G.; Bouchaud, J. P. Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios. Phys. Rev. E 2005, 71, 041505  doi: 10.1103/PhysRevE.71.041505

    55. [55]

      Berthier, L.; Biroli, G.; Bouchaud, J. P.; Kob, W.; Miyazaki, K.; Reichman, D. R. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. J. Chem. Phys. 2007, 126, 184503

    56. [56]

      Fox, T. G.; Flory, P. J. The glass temperature and related properties of polystyrene - influence of molecular weight. J. Polym. Sci. 1954, 14, 315−319  doi: 10.1002/pol.1954.120147514

    57. [57]

      Doolittle, A. K. Studies in Newtonian Flow. II. The dependence of the biscosity of liquids on free-space. J. Appl. Phys. 1951, 22, 1471−1475

    58. [58]

      Furukawa, A. Simple picture of supercooled liquid dynamics: Dynamic scaling and phenomenology based on clusters. Phys. Rev. E 2013, 87, 062321

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    3. [3]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    4. [4]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    5. [5]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    6. [6]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    7. [7]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    8. [8]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    9. [9]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    10. [10]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    11. [11]

      Xiaohan Zhang Bo Xiao . Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations. Chinese Journal of Structural Chemistry, 2025, 44(2): 100419-100419. doi: 10.1016/j.cjsc.2024.100419

    12. [12]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    13. [13]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    14. [14]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    15. [15]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    16. [16]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    17. [17]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    18. [18]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    19. [19]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    20. [20]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

Metrics
  • PDF Downloads(0)
  • Abstract views(794)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return