Citation: Ying Lu, Yong-Feng Men. Initiation, Development and Stabilization of Cavities during Tensile Deformation of Semicrystalline Polymers[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1195-1199. doi: 10.1007/s10118-018-2123-x shu

Initiation, Development and Stabilization of Cavities during Tensile Deformation of Semicrystalline Polymers

  • Corresponding author: Yong-Feng Men, men@ciac.ac.cn
  • Received Date: 10 January 2018
    Revised Date: 10 January 2018
    Accepted Date: 5 February 2018
    Available Online: 21 March 2018

  • By using polybutene-1 as a typical example, we illustrate the initiation, development and stabilization of cavities in the sample during tensile deformation. Samples with the same crystallinity, long spacing and crystalline lamellar thickness but very different sizes of spherulites were prepared via changing the melt history. Dimension of cavities during stretching the samples was determined by in situ ultra small angle X-ray scattering techniques. It turned out that the size of the cavities was bigger in the sample with larger spherulites than the one with smaller spherulites. The results show clear evidence of initiating cavities within crystalline phase at the grain-boundary of crystalline blocks, growing of cavities passing through parallel stacked lamellar crystals and amorphous layers and finally stablized by tilted lamellae at both ends of the plate-like cavities within the spherulites.
  • 加载中
    1. [1]

      Strobl, G., "The physics of polymers", 2nd ed., Springer, Berlin, Germany, 1997

    2. [2]

      Lin, L.; Argon, A. S. Structure and plastic-deformation of polyethylene. J. Mater. Sci. 1994, 29(2), 294−323  doi: 10.1007/BF01162485

    3. [3]

      Chen, W.; Li, X. Y.; Liu, Y. P.; Li, J.; Zhou, W. M.; Chen, L.; Li, L. B. The spatial correlation between crystalline and amorphous orientations of isotactic polypropylene during plastic deformation: An in situ observation with FTIR imaging. Chinese J. Polym. Sci. 2015, 33(4), 613−620  doi: 10.1007/s10118-015-1613-3

    4. [4]

      Qiu, J.; Wang, Z. G.; Yang, L.; Zhao, J. C.; Niu, Y. H.; Hsiao, B. S. Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer 2007, 48(23), 6934−6947  doi: 10.1016/j.polymer.2007.08.066

    5. [5]

      Chen, X. W.; Lv, F.; Su, F. M.; Ji, Y. X.; Meng, L. P.; Wan, C. X.; Lin, Y. F.; Li, X. Y.; Li, L. B. Deformation mechanism of ipp under uniaxial stretching over a wide temperature range: An in-situ synchrotron radiation saxs/waxs study. Polymer 2017, 118, 12−21  doi: 10.1016/j.polymer.2017.04.054

    6. [6]

      Young, R. J.; Bowden, P. B.; Ritchie, J. M.; Rider, J. G. Deformation mechanisms in oriented high-density polyethylene. J. Mater. Sci. 1973, 8(1), 23−36  doi: 10.1007/BF00755579

    7. [7]

      Bowden, P. B.; Young, R. J. Deformation mechanisms in crystalline polymers. J. Mater. Sci. 1974, 9(12), 2034−2051  doi: 10.1007/BF00540553

    8. [8]

      Song, H. H.; Argon, A. S.; Cohen, R. E. Morphology of highly textured high-density polyethylene. Macromolecules 1990, 23(3), 870−876  doi: 10.1021/ma00205a030

    9. [9]

      Seiberle, H.; Stille, W.; Strobl, G. Comparative-study of individual and collective rotational motion in mixtures of liquid-crystalline side group polymers and low-molecular- weight mesogens. Macromolecules 1990, 23(7), 2008−2016  doi: 10.1021/ma00209a022

    10. [10]

      Flory, P. J.; Yoon, D. Y. Molecular morphology in semi-crystalline polymers. Nature 1978, 272(5650), 226−229  doi: 10.1038/272226a0

    11. [11]

      Popli, R.; Mandelkern, L. Influence of structural and morphologi-cal factors on the mechanical-properties of the polyethylenes. J. Polym. Sci., Part B: Polym. Phys. 1987, 25(3), 441−483  doi: 10.1002/polb.1987.090250301

    12. [12]

      Wang, Y. T.; Jiang, Z. Y.; Wu, Z. H.; Men, Y. F. Tensile deformation of polybutene-1 with stable form I at elevated temperature. Macromolecules 2013, 46(2), 518−522  doi: 10.1021/ma302389j

    13. [13]

      Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32(13), 4390−4403

    14. [14]

      Hobeika, S.; Men, Y.; Strobl, G. Temperature and strain rate independence of critical strains in polyethylene and poly(ethylene-co-vinyl acetate). Macromolecules 2000, 33(5), 1827−1833  doi: 10.1021/ma9910484

    15. [15]

      Hong, K.; Strobl, G. Network stretching during tensile drawing of polyethylene: a study using X-ray scattering and microscopy. Macromolecules 2006, 39(1), 268−273  doi: 10.1021/ma051726o

    16. [16]

      Men, Y.; Rieger, J.; Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett. 2003, 91(9), 095502  doi: 10.1103/PhysRevLett.91.095502

    17. [17]

      Galeski, A.; Rozanski, A. Flory prize lecture: cavitation during drawing of crystalline polymers. Macromol. Symp. 2010, 298(1), 1−9  doi: 10.1002/masy.v298.1

    18. [18]

      Humbert, S.; Lame, O.; Chenal, J. M.; Rochas, C.; Vigier, G. New insight on initiation of cavitation in semicrystalline polymers: in-situ SAXS measurements. Macromolecules 2010, 43(17), 7212−7221  doi: 10.1021/ma101042d

    19. [19]

      Xiong, B.; Lame, O.; Chenal, J. M.; Rochas, C.; Seguela, R.; Vigier, G. In-situ SAXS study and modeling of the cavitation/crystal-shear competition in semi-crystalline polymers: influence of temperature and microstructure in polyethylene. Polymer 2013, 54(20), 5408−5418  doi: 10.1016/j.polymer.2013.07.055

    20. [20]

      Men, Y. F.; Rieger, J.; Homeyer, J. Synchrotron ultrasmall-angle X-ray scattering studies on tensile deformation of poly(1-butene). Macromolecules 2004, 37(25), 9481−9488  doi: 10.1021/ma048274k

    21. [21]

      Wang, Y. T.; Jiang, Z. Y.; Fu, L. L.; Lu, Y.; Men, Y. F. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers. Plos One 2014, 9(5), e97234  doi: 10.1371/journal.pone.0097234

    22. [22]

      Lu, Y.; Wang, Y. T.; Chen, R.; Zhao, J. Y.; Jiang, Z. Y.; Men, Y. F. Cavitation in lsotactic polypropylene at large strains during tensile deformation at elevated temperatures. Macromolecules 2015, 48(16), 5799−5806  doi: 10.1021/acs.macromol.5b00818

    23. [23]

      Taraiya, A. K.; Richardson, A.; Ward, I. M. Production and properties of highly oriented polypropylene by die drawing. J. Appl. Polym. Sci. 1987, 33(7), 2559−2579  doi: 10.1002/app.1987.070330723

    24. [24]

      Tashiro, K.; Hu, J.; Wang, H.; Hanesaka, M.; Saiani, A. Refinement of the crystal structures of forms I and II of isotactic polybutene-1 and a proposal of phase transition mechanism between them. Macromolecules 2016, 49(4), 1392−1404  doi: 10.1021/acs.macromol.5b02785

    25. [25]

      Maruyama, M.; Sakamoto, Y.; Nozaki, K.; Yamamoto, T.; Kajioka, H.; Toda, A.; Yamada, K. Kinetic study of the ii-i phase transition of isotactic polybutene-1. Polymer 2010, 51(23), 5532−5538  doi: 10.1016/j.polymer.2010.09.066

    26. [26]

      Gohil, R. M.; Milles, M. J.; Petermann, J. On the molecular mechanism of the crystal transformation (tetragonal-hexagonal) in polybutene-1. J. Macromol. Sci. Phys. 1982, B21(2), 189−201

    27. [27]

      Rubin, I. D. Relative stabilities of polymorphs of polybutene-1 obtained from melt. J. Polym. Sci., Part B: Polym. Phys. Lett. 1964, 2(7pb), 747−749

    28. [28]

      Porod, G., in "Small-angle X-ray scattering", ed. by Glatter, O. and Kratky, O., Academic Press, New York, 1982, p. 35

  • 加载中
    1. [1]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    2. [2]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    3. [3]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    4. [4]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    5. [5]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    6. [6]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    7. [7]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    10. [10]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    13. [13]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    16. [16]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(0)
  • Abstract views(791)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return