Citation: Yan-Yan Wang, Qing-Liang Song, Lin-Li He. Liquid-crystal Assembly of Semiflexible-coil/Homopolymer Blends: a Dissipative Particle Dynamics Study[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1200-1206. doi: 10.1007/s10118-018-2122-y shu

Liquid-crystal Assembly of Semiflexible-coil/Homopolymer Blends: a Dissipative Particle Dynamics Study

  • Corresponding author: Lin-Li He, linlihe@wzu.edu.cn
  • Received Date: 28 December 2017
    Revised Date: 5 February 2018
    Accepted Date: 5 February 2018
    Available Online: 30 March 2018

  • The liquid-crystal assembly of semiflexible-coil diblock copolymers with coil or semiflexible homopolymers is studied by dissipative particle dynamics simulation. Phase diagrams of the blends and orientation ordering parameters among semiflexible blocks are constructed as a function of chain stiffness and homopolymer volume fraction. For semiflexible-coil/coil blends with varying stiffness of semiflexible blocks, we display the rich phase behaviors of the system transited from coil-coil/coil to rod-coil/coil blends. The disorder-lamellae or lamellae-liquid crystalline transition and " dry brush” phenomenon induced by coil homopolymers are observed. For semiflexible-coil/semiflexible blends, adding semiflexible homopolymers also leads to a disorder-order transition and even a transition between monolayer and bilayer smectic-A phase. The results demonstrate that blending homopolymers into semiflexible copolymers can induce liquid-crystal assembly and even improve the orientation ordering of semiflexible blocks effectively.
  • 加载中
    1. [1]

      de Cuendias, A.; Hiorns, R. C.; Cloutet, E.; Vignau, L.; Cramail, H. Conjugated rod-coil block copolymers and optoelectronic applications. Polym. Int. 2010, 59, 1452−1476  doi: 10.1002/pi.v59:11

    2. [2]

      Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Leveque, P.; Audinot, J. N.; Berson, S.; Heiser, T.; Hadziioannou, G.; Mezzenga, R. A new supramolecular route for using rod-coil block copolymers in photovoltaic applications. Adv. Mater. 2010, 22, 763−768  doi: 10.1002/adma.v22:6

    3. [3]

      Nie, Z. H.; Kumacheva, E. Patterning surfaces with functional polymers. Nat. Mater. 2008, 7, 277−290  doi: 10.1038/nmat2109

    4. [4]

      Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32−38

    5. [5]

      Friedel, P.; John, A.; Pospiech, D.; Jehnichen, D.; Netz, R. R. Influence of the polydispersity of the diblock copolymer. Macromol. Theory Simul. 2002, 11(7), 785−793  doi: 10.1002/(ISSN)1521-3919

    6. [6]

      Coakley, K. M.; McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 2004, 16, 4533−4542  doi: 10.1021/cm049654n

    7. [7]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324−1338  doi: 10.1021/cr050149z

    8. [8]

      Segalman, R. A.; McCulloch, B.; Kirmayer, S; Urban, J. J. Block copolymers for organic optoelectronics. Macromolecules 2009, 42, 9205−9216  doi: 10.1021/ma901350w

    9. [9]

      Olsen, B. D.; Segalman, R. A. Self-assembly of rod-coil block copolymers. Mater. Sci. Eng. R-Rep. 2008, 62, 37−66  doi: 10.1016/j.mser.2008.04.001

    10. [10]

      Jenekhe, S. A.; Chen, X. L. self-assembly of rod-coil block copolymers. Science 1998, 279, 1903−1907  doi: 10.1126/science.279.5358.1903

    11. [11]

      Lee, M.; Cho, B. K.; Zin, W. C. Supramolecular structures from rod-coil block copolymers. Chem. Rev. 2001, 101, 3869−3892  doi: 10.1021/cr0001131

    12. [12]

      Horsch, M. A.; Zhang, Z. L.; Glotzer, S. C. Self-assembly of polymer-tethered nanorods. Phys. Rev. Lett. 2005, 95, 056105  doi: 10.1103/PhysRevLett.95.056105

    13. [13]

      Chen, J. Z.; Zhang, C. X.; Sun, Z. Y.; Zheng, Y. S.; An, L. J. A novel self-consistent-field lattice model for block copolymers. J. Chem. Phys. 2006, 124, 104907  doi: 10.1063/1.2176619

    14. [14]

      Song, W. D.; Tang, P.; Qiu, F.; Yang, Y. L.; Shi, A. C. Phase behavior of semiflexible-coil diblock copolymers, a hybrid numerical SCFT approach. Soft Matter 2011, 7, 929−938  doi: 10.1039/C0SM00841A

    15. [15]

      AlSunaidi, B. A.; den Otter, W. K.; Clarke, J. H. R. Liquid-crystalline orde-ring in rod-coil diblock copolymersstudied by mesoscale simulations. Phil. Trans. R. Soc. Lond 2004, 362, 1773−1781  doi: 10.1098/rsta.2004.1414

    16. [16]

      Jiang, Z.; Dou, W.; Shen, Y.; Sun, T.; Xu, P. Residual occurrence and energy property of proteins in HNP model. Chinese Physics B 2015, 24, 116802  doi: 10.1088/1674-1056/24/11/116802

    17. [17]

      Shi, L. Y.; Hsieh, I. F.; Zhou, Y.; Yu, X.; Tian, H. J.; Pan, Y.; Fan, X. H.; Shen, Z. Thermoreversible order-order transition of a diblock copolymer induced by the unusual coil-rod conformational change of one block. Macromolecules 2012, 45, 9719−9726  doi: 10.1021/ma302048y

    18. [18]

      Tang, J.; Jiang, Y.; Zhang, X.; Yan, D.; Chen, J. Z. Y. Phase diagram of rod-coil diblock copolymer melts by self-consistent field theory. Macromolecules 2015, 48, 9060−9070  doi: 10.1021/acs.macromol.5b02235

    19. [19]

      Li, S. B.; Jiang, Y.; Chen, J. Z. Y. Phase transitions in semiflexible-rod diblock copolymers, a self-consistent field theory. Soft Matter 2014, 10, 8932−8944  doi: 10.1039/C4SM01884B

    20. [20]

      Gao, J.; Tang, P.; Yang, Y. Non-lamellae structures of coil-semiflexible diblock copolymers. Soft Matter 2013, 9, 69−81  doi: 10.1039/C2SM26758F

    21. [21]

      Jiang, Z.; Dou, W.; Sun, T.; Shen, Y.; Cao, D. Effects of chain flexibility on the conformational behavior of a single polymer chain. J. Polym. Res. 2015, 22, 236  doi: 10.1007/s10965-015-0875-3

    22. [22]

      Dong, B. J.; Huang, Z. H.; Chen, H. L.; Yan, L. T. Chain-stiffness-induced entropy effects mediate interfacial assembly of janus nanoparticles in block copolymers, from interfacial nanostructures to optical responses. Macromolecules 2015, 48, 5385−5393  doi: 10.1021/acs.macromol.5b01290

    23. [23]

      Tao, Y. F.; Olsen, B. D.; Ganesan, V.; Segalman, R. A. Nonlamellar phases in asymmetric rod-coil block copolymers at increased segregation strengths. Macromolecules 2007, 40, 3320−3327  doi: 10.1021/ma062876h

    24. [24]

      Song, W.; Tang, P.; Qiu, F.; Yang, Y.; Shi, A. C. Phase behavior of rod-coil diblock copolymer and homopolymer blends from self-consistent field theory. J. Phys. Chem. B 2011, 115, 8390−8400  doi: 10.1021/jp201972n

    25. [25]

      Gao, L. C.; Yao, J.; Shen, Z. H.; Wu, Y. X.; Chen, X.; Fan, X. F.; Zhou, Q. F. Self-assembly of rod-coil-rod triblock copolymer and homopolymer blends. Macromolecules 2009, 42, 1047−1050  doi: 10.1021/ma802566e

    26. [26]

      Netz, R. R.; Schick, M. Self-consistent field theory and its applications in polymer systems. Macromolecules 1998, 31, 5105−5122  doi: 10.1021/ma9717505

    27. [27]

      Wu, H. H.; He, L. L.; Xiang, X. H.; Wang, Y. W.; Jiang, Z. T. Phase behavior of the blend of rod-coil diblock copolymer and the corresponding coil homopolymer. Soft Matter 2014, 6, 6278−6285

    28. [28]

      Zhu, X. M.; Wang, L. Q.; Lin, J. P. Self-assembly of rod-coil multiblock copolymers, a strategy for creating hierarchical smectic structures. J. Phys. Chem. B. 2013, 117, 5748−5756  doi: 10.1021/jp400882h

    29. [29]

      Zhang, X.; Wang, L. Q.; Zhang, L. S.; Lin, J. P.; Jiang, T. Controllable hierarchical microstructures self-assembled from multiblock copolymers confined in thin. Langmuir 2015, 31, 2533  doi: 10.1021/la503985u

    30. [30]

      Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulation microscopic hydrodynamic phenomena dissipativeparticle dynamics. Europhys. Lett. 1992, 19, 155−160  doi: 10.1209/0295-5075/19/3/001

    31. [31]

      Groot, R. D.; Warren, P. B. Dissipative particle dynamics, bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423−4435  doi: 10.1063/1.474784

    32. [32]

      Groot, R. D.; Madden, T. J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998, 108, 8713−8724  doi: 10.1063/1.476300

    33. [33]

      Micka, U.; Kremer, K. J. The persistence length of polyelectrolyte chains. J. Phys. Condens. Matter 1996, 8, 9463−9470  doi: 10.1088/0953-8984/8/47/046

    34. [34]

      Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1  doi: 10.1006/jcph.1995.1039

    35. [35]

      Li, C. Y.; Tenneti, K. K.; Zhang, D.; Zhang, H.; Wan, X.; Chen, E.; Zhou, Q.; Carlos, A.; Igos, S.; Hsiao, B. S. Hierarchical assembly of a series of rod-coil block copolymers, supramolecular LC Phase in nanoenviroment. Macromolecules 2004, 37, 2854−2860  doi: 10.1021/ma0354905

    36. [36]

      Irving, J. H.; Kirkwood, J. G. The statistical mechanical theory of transport processes. IV. The Equations of Hydrodynamics. J. Chem. Phys. 1950, 18, 817

    37. [37]

      Masten, M. W.; Barrett, C. J. Liquid-crystalline behavior of rod-coil diblock copolymers. J. Chem. Phys. 1998, 109, 4108−4118  doi: 10.1063/1.477011

    38. [38]

      Chen, J. T.; Thomas, E. L.; Ober, C. K.; Hwang, S. S. Zigzag morphology of a poly(styrene-b-hexyl isocyanate) rod-coil block copolymer. Macromolecules 1995, 28, 1688−1697  doi: 10.1021/ma00109a048

    39. [39]

      Radzilowski, L. H.; Carragher, B. O.; Stupp, S. I. Three-dimensional self-assembly of rodcoil copolymer nanostructures. Macromolecules 1997, 30, 2110−2119  doi: 10.1021/ma9609700

    40. [40]

      Ryu, J. H.; Oh, N. K.; Zi, W. C.; Lee, M. J. Supramolecular reactor from self-assembly of rod-coil molecule in aqueous environment. J. Am. Chem. Soc. 2004, 126, 3551−3558  doi: 10.1021/ja039793q

    41. [41]

      Lee, M.; Cho, K. B. K.; Ihn, J.; Lee, W. K.; Oh, N. K.; Zin, W. C. Supramolecular honeycomb by self-assembly of molecular rods in rod-coil molecule. J. Am. Chem. Soc. 2001, 123, 4647−4648  doi: 10.1021/ja004071+

    42. [42]

      Masten, M. W. Cylinder-sphere epitaxial transition in block copolymer melts. J. Chem. Phys. 2001, 114, 8165  doi: 10.1063/1.1365085

  • 加载中
    1. [1]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    2. [2]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    3. [3]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    4. [4]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    5. [5]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    6. [6]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    7. [7]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    8. [8]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    9. [9]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    10. [10]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    11. [11]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    14. [14]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    15. [15]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    16. [16]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    17. [17]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    18. [18]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    19. [19]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    20. [20]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return