Citation: Nan Wang, Hao Tian, Shu-Yan Zhu, De-Yue Yan, Yi-Yong Mai. Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 266-272. doi: 10.1007/s10118-018-2091-1 shu

Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution

  • Corresponding author: Yi-Yong Mai, mai@sjtu.edu.cn
  • Received Date: 12 October 2017
    Accepted Date: 10 November 2017
    Available Online: 15 December 2017

  • The self-assembly of block copolymer in solution has proven to be an effective strategy for building up a wide range of nanomaterials with diverse structures and applications. This paper reports a facile self-assembly approach towards two-dimensional (2D) sandwich-like mesoporous nitrogen-doped carbon/reduced graphene oxide nanocomposites (denoted as mNC/rGO) with well-defined large mesopores. The strategy involves the synergistic self-assembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) spherical micelles, m-phenylenediamine (mPD) monomers and GO in solution and the subsequent carbonization at 900℃. The resultant mNC/rGO nanosheets have an average pore size of 19 nm, a high specific surface of 812 m2·g-1 and a nitrogen content of 2.2 wt%. As an oxygen reduction reaction (ORR) catalyst, the unique structural features render the metal-free nanosheets excellent electrocatalytic performance. In a 0.1 mol·L-1 KOH alkaline medium, mNC/rGO exhibits a four-electron transfer pathway with a high half-wave-potential (E1/2) of +0.77 V versus reversible hydrogen electrode (RHE) and a limiting current density (JL) of 5.2 mA·cm-2, which are well comparable with those of the commercial Pt/C catalysts.
  • 加载中
    1. [1]

      Steele B. C., Heinzel H. A.. Materials for fuel-cell technologies[J]. Nature, 2001,414(6861):345-352. doi: 10.1038/35104620

    2. [2]

      Qu L. T., Liu Y., Baek J. B., Dai L. M.. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010,4(3):1321-1326. doi: 10.1021/nn901850u

    3. [3]

      Morozan A., Jousselme B., Palacin S.. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy Environ. Sci., 2011,4(4):1238-1254. doi: 10.1039/c0ee00601g

    4. [4]

      Liu J., Song P., Ning Z. G., Xu W. L.. Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction[J]. Electrocatalysis, 2015,6(2):132-147. doi: 10.1007/s12678-014-0243-9

    5. [5]

      Karunagaran R., Tung T. T., Shearer C., Tran D., Coghlan C., Doonan C., Losic D.. A unique 3D nitrogen-doped carbon composite as high-performance oxygen reduction catalyst[J]. Materials, 2017,10(8)921.  

    6. [6]

      Cong K., Ritter M., Stumpf S., Schröter B., Schubert U. S., Ignaszak A.. Metal-free electrocatalyst for oxygen reduction:synthesis-controlled density of catalytic centers and impact on ORR[J]. Electroanalysis, 2014,26(12):2567-2573. doi: 10.1002/elan.v26.12

    7. [7]

      Gavrilov N., Pašti I. A., Mitrić M., Travas-Sejdić J., Ćirić-Marjanović G., Mentus S. V.. Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media[J]. J. Power Sources, 2012,220:306-316. doi: 10.1016/j.jpowsour.2012.07.119

    8. [8]

      Compton O. C., Nguyen S. T.. Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials[J]. Small, 2010,6(6):711-723. doi: 10.1002/smll.v6:6

    9. [9]

      Higgins D., Zamani P., Yu A. P., Chen Z. W.. The application of graphene and its composites in oxygen reduction electrocatalysis:a perspective and review of recent progress[J]. Energy Environ. Sci., 2016,9(2):357-390. doi: 10.1039/C5EE02474A

    10. [10]

      Xu F., Cai R. J., Zeng Q. C., Zou C., Wu D. C., Li F., Lu X. E., L Y. R., Fu R. W.. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors[J]. J. Mater. Chem., 2011,21(6):1970-1976. doi: 10.1039/C0JM02044C

    11. [11]

      Wei W., Liang H.W., Parvez K., Zhuang X. D., Feng X. L., Müllen K.. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2014,126(6):1596-1600. doi: 10.1002/ange.201307319

    12. [12]

      Wang G., Sun Y. H., Li D. B., Liang H. W., Dong R. H., Feng X. L., Müllen K.. Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica[J]. Angew. Chem. Int. Ed., 2015,127(50):15406-15411. doi: 10.1002/ange.201507735

    13. [13]

      Tang J., Liu J., Li C., Li Y., Tade M. O., Dai S., Yamauchi Y.. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angew. Chem. Int. Ed., 2015,54(2):588-593.  

    14. [14]

      Liang C. D., Li Z. J., Dai S.. Mesoporous carbon materials:synthesis and modification[J]. Angew. Chem. Int. Ed., 2008,47(20):3696-3717. doi: 10.1002/(ISSN)1521-3773

    15. [15]

      Deng Y. H., Wei J., Sun Z. K., Zhao D. Y.. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers[J]. Chem. Soc. Rev., 2013,42(9):4054-4070. doi: 10.1039/C2CS35426H

    16. [16]

      Tang Z. W., Liu S. H., Lu Z. T., Lin X. D., Zheng B. N., Liu R. L., Wu D. C., Fu R. W.. A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances[J]. Chem. Commun., 2017,53(50):6764-6767. doi: 10.1039/C7CC03212A

    17. [17]

      Lu H., Fan L., Liu Q. M., Wei J. R., Ren T. B., Du J. Z.. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy[J]. Polym. Chem., 2012,3(8):2217-2227. doi: 10.1039/c2py20181j

    18. [18]

      Xiong D. A., He Z., P., An Y. L., Li Z., Wang H., Chen X., Shi L. Q.. Temperature-responsive multilayered micelles formed from the complexation of PNIPAM-b-P4VP block-copolymer and PS-b-PAA core-shell micelles[J]. Polymer, 2008,49(10):2548-2552. doi: 10.1016/j.polymer.2008.03.052

    19. [19]

      Liu T., Qian Y. F., Hu X. L., Ge Z. S., Liu S. Y.. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery[J]. J. Mater. Chem., 2012,22(11):5020-5030. doi: 10.1039/c2jm15092a

    20. [20]

      Fan W. J., Fan G. Q., Zhang X. H., Yang Z. H.. Getting to the bottom morphology of block copolymer thin films[J]. Chinese J. Polym. Sci., 2016,34(1):88-93. doi: 10.1007/s10118-016-1731-6

    21. [21]

      Zhang W. Q., Shi L. Q., An Y. L., Gao L. C., Wu K., Ma R. J.. A convenient method of tuning amphiphilic block copolymer micellar morphology[J]. Macromolecules, 2004,37(7):2551-2555. doi: 10.1021/ma035801b

    22. [22]

      Lin Z. X., Liu S. H., Mao W. T., Tian H., Wang N., Zhang N. H., Tian F., Han L., Feng X. L., Mai Y. Y.. Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces[J]. Angew. Chem. Int. Ed., 2017,56(25):7135-7140. doi: 10.1002/anie.201702591

    23. [23]

      Wei J., Sun Z. K., Luo W., Li Y. H., Elzatahry A. A., Al-Enizi A. M., Deng Y. H., Zhao D. Y.. New insight into the synthesis of large-pore ordered mesoporous materials[J]. J. Am. Chem. Soc., 2017,139(5):1706-1713. doi: 10.1021/jacs.6b11411

    24. [24]

      Liu S. H., Gordiichuk P., Wu Z. S., Liu Z. Y., Wei W., Wagner M., Mohamed-Noriega N., Wu D. Q., Mai Y. Y., Herrmann A., Müllen K., Feng X. L.. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers[J]. Nat. Commun., 2015,6:8817-8825. doi: 10.1038/ncomms9817

    25. [25]

      Qiao M., Tang C., He G., Qiu K., Binions R., Parkin I. P., Zhang Q., Guo Z., Titirici M. M.. Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction:conductivity versusactive sites[J]. J. Mater. Chem. A, 2016,4(32):12658-12666. doi: 10.1039/C6TA04578B

    26. [26]

      Aijaz A., Fujiwara N., Xu Q.. From metal-organic framework to nitrogen-decorated nanoporous carbons:high CO2 uptake and efficient catalytic oxygen reduction[J]. J. Am. Chem. Soc., 2014,136(19):6790-6793. doi: 10.1021/ja5003907

    27. [27]

      Zhang P., Sun F., Xiang Z. H., Shen Z. G., Yun J., Cao D. P.. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy Environ. Sci., 2014,7(1):442-450. doi: 10.1039/C3EE42799D

    28. [28]

      Chen P., Wang L. K., Wang G., Gao M. R., Ge J., Yuan W. J., Shen Y. H., Xie A. J., Yu S. H.. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass:an efficient catalyst for oxygen reduction reaction[J]. Energy Environ. Sci., 2014,7(12):4095-4103. doi: 10.1039/C4EE02531H

    29. [29]

      Qu K. G., Zheng Y., Dai S., Qiao S. Z.. Polydopaminegraphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction[J]. Nanoscale, 2015,7(29):12598-12605. doi: 10.1039/C5NR03089G

    30. [30]

      Cao C. A., Zhuang X. D., Su Y. Z., Zhang Y., Zhang F., Wu D. Q., Feng X. L.. 2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction[J]. Polym. Chem., 2014,5(6):2057-2064. doi: 10.1039/C3PY01581E

    31. [31]

      Lin Z. Y., Waller G. H., Liu Y., Liu M. L., Wong C. P.. 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy, 2013,2(2):241-248. doi: 10.1016/j.nanoen.2012.09.002

    32. [32]

      Lin Z. Y., Waller G. H., Liu Y., Liu M. L., Wong C. P.. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Carbon, 2013,53:130-136. doi: 10.1016/j.carbon.2012.10.039

    33. [33]

      Yasuda S., Yu L., Kim J., Murakoshi K.. Selective nitrogen doping in graphene for oxygen reduction reactions[J]. Chem. Commun., 2013,49(83):9627-9629. doi: 10.1039/c3cc45641b

    34. [34]

      Mai Y. Y., Eisenberg A.. Controlled incorporation of particles into the central portion of vesicle walls[J]. J. Am. Chem. Soc., 2010,132(29):10078-10084. doi: 10.1021/ja1024063

    35. [35]

      Tian H., Lin Z. X., Xu F. G., Zheng J. X., Zhuang X. D., Mai Y. Y., Feng X. L.. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblockcopolymer micelles in solution[J]. Small, 2016,12(23):3155-3163. doi: 10.1002/smll.v12.23

    36. [36]

      Shahriary L., Athawale A. A.. Graphene oxide synthesized by using modified hummers approach[J]. Int. J. Renew. Energy Environ. Eng., 2014,2(01):58-63.  

    37. [37]

      Liu S. H., Wang F. X., Dong R. H., Zhang T., Zhang J., Zhuang X. D., Mai Y. Y., Feng X. L.. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size[J]. Adv. Mater., 2016,28(38):8365-8370. doi: 10.1002/adma.v28.38

    38. [38]

      Kudin K. N., Ozbas B., Schniepp H. C., Prud'homme R. K., Aksay I. A., Car R.. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Lett., 2008,8(1):36-41. doi: 10.1021/nl071822y

    39. [39]

      Hu C. G., Dai L. M.. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angew. Chem. Int. Ed., 2016,55(39):11736-11758. doi: 10.1002/anie.201509982

  • 加载中
    1. [1]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    2. [2]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    3. [3]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    4. [4]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    5. [5]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    8. [8]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    9. [9]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    10. [10]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    11. [11]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    12. [12]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    13. [13]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    14. [14]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    15. [15]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    16. [16]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    17. [17]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(0)
  • Abstract views(751)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return