Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution
- Corresponding author: Yi-Yong Mai, mai@sjtu.edu.cn
Citation:
Nan Wang, Hao Tian, Shu-Yan Zhu, De-Yue Yan, Yi-Yong Mai. Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution[J]. Chinese Journal of Polymer Science,
;2018, 36(3): 266-272.
doi:
10.1007/s10118-018-2091-1
Steele B. C., Heinzel H. A.. Materials for fuel-cell technologies[J]. Nature, 2001,414(6861):345-352. doi: 10.1038/35104620
Qu L. T., Liu Y., Baek J. B., Dai L. M.. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010,4(3):1321-1326. doi: 10.1021/nn901850u
Morozan A., Jousselme B., Palacin S.. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy Environ. Sci., 2011,4(4):1238-1254. doi: 10.1039/c0ee00601g
Liu J., Song P., Ning Z. G., Xu W. L.. Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction[J]. Electrocatalysis, 2015,6(2):132-147. doi: 10.1007/s12678-014-0243-9
Karunagaran R., Tung T. T., Shearer C., Tran D., Coghlan C., Doonan C., Losic D.. A unique 3D nitrogen-doped carbon composite as high-performance oxygen reduction catalyst[J]. Materials, 2017,10(8)921.
Cong K., Ritter M., Stumpf S., Schröter B., Schubert U. S., Ignaszak A.. Metal-free electrocatalyst for oxygen reduction:synthesis-controlled density of catalytic centers and impact on ORR[J]. Electroanalysis, 2014,26(12):2567-2573. doi: 10.1002/elan.v26.12
Gavrilov N., Pašti I. A., Mitrić M., Travas-Sejdić J., Ćirić-Marjanović G., Mentus S. V.. Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media[J]. J. Power Sources, 2012,220:306-316. doi: 10.1016/j.jpowsour.2012.07.119
Compton O. C., Nguyen S. T.. Graphene oxide, highly reduced graphene oxide, and graphene:versatile building blocks for carbon-based materials[J]. Small, 2010,6(6):711-723. doi: 10.1002/smll.v6:6
Higgins D., Zamani P., Yu A. P., Chen Z. W.. The application of graphene and its composites in oxygen reduction electrocatalysis:a perspective and review of recent progress[J]. Energy Environ. Sci., 2016,9(2):357-390. doi: 10.1039/C5EE02474A
Xu F., Cai R. J., Zeng Q. C., Zou C., Wu D. C., Li F., Lu X. E., L Y. R., Fu R. W.. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors[J]. J. Mater. Chem., 2011,21(6):1970-1976. doi: 10.1039/C0JM02044C
Wei W., Liang H.W., Parvez K., Zhuang X. D., Feng X. L., Müllen K.. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2014,126(6):1596-1600. doi: 10.1002/ange.201307319
Wang G., Sun Y. H., Li D. B., Liang H. W., Dong R. H., Feng X. L., Müllen K.. Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica[J]. Angew. Chem. Int. Ed., 2015,127(50):15406-15411. doi: 10.1002/ange.201507735
Tang J., Liu J., Li C., Li Y., Tade M. O., Dai S., Yamauchi Y.. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angew. Chem. Int. Ed., 2015,54(2):588-593.
Liang C. D., Li Z. J., Dai S.. Mesoporous carbon materials:synthesis and modification[J]. Angew. Chem. Int. Ed., 2008,47(20):3696-3717. doi: 10.1002/(ISSN)1521-3773
Deng Y. H., Wei J., Sun Z. K., Zhao D. Y.. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers[J]. Chem. Soc. Rev., 2013,42(9):4054-4070. doi: 10.1039/C2CS35426H
Tang Z. W., Liu S. H., Lu Z. T., Lin X. D., Zheng B. N., Liu R. L., Wu D. C., Fu R. W.. A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances[J]. Chem. Commun., 2017,53(50):6764-6767. doi: 10.1039/C7CC03212A
Lu H., Fan L., Liu Q. M., Wei J. R., Ren T. B., Du J. Z.. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy[J]. Polym. Chem., 2012,3(8):2217-2227. doi: 10.1039/c2py20181j
Xiong D. A., He Z., P., An Y. L., Li Z., Wang H., Chen X., Shi L. Q.. Temperature-responsive multilayered micelles formed from the complexation of PNIPAM-b-P4VP block-copolymer and PS-b-PAA core-shell micelles[J]. Polymer, 2008,49(10):2548-2552. doi: 10.1016/j.polymer.2008.03.052
Liu T., Qian Y. F., Hu X. L., Ge Z. S., Liu S. Y.. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery[J]. J. Mater. Chem., 2012,22(11):5020-5030. doi: 10.1039/c2jm15092a
Fan W. J., Fan G. Q., Zhang X. H., Yang Z. H.. Getting to the bottom morphology of block copolymer thin films[J]. Chinese J. Polym. Sci., 2016,34(1):88-93. doi: 10.1007/s10118-016-1731-6
Zhang W. Q., Shi L. Q., An Y. L., Gao L. C., Wu K., Ma R. J.. A convenient method of tuning amphiphilic block copolymer micellar morphology[J]. Macromolecules, 2004,37(7):2551-2555. doi: 10.1021/ma035801b
Lin Z. X., Liu S. H., Mao W. T., Tian H., Wang N., Zhang N. H., Tian F., Han L., Feng X. L., Mai Y. Y.. Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces[J]. Angew. Chem. Int. Ed., 2017,56(25):7135-7140. doi: 10.1002/anie.201702591
Wei J., Sun Z. K., Luo W., Li Y. H., Elzatahry A. A., Al-Enizi A. M., Deng Y. H., Zhao D. Y.. New insight into the synthesis of large-pore ordered mesoporous materials[J]. J. Am. Chem. Soc., 2017,139(5):1706-1713. doi: 10.1021/jacs.6b11411
Liu S. H., Gordiichuk P., Wu Z. S., Liu Z. Y., Wei W., Wagner M., Mohamed-Noriega N., Wu D. Q., Mai Y. Y., Herrmann A., Müllen K., Feng X. L.. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers[J]. Nat. Commun., 2015,6:8817-8825. doi: 10.1038/ncomms9817
Qiao M., Tang C., He G., Qiu K., Binions R., Parkin I. P., Zhang Q., Guo Z., Titirici M. M.. Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction:conductivity versusactive sites[J]. J. Mater. Chem. A, 2016,4(32):12658-12666. doi: 10.1039/C6TA04578B
Aijaz A., Fujiwara N., Xu Q.. From metal-organic framework to nitrogen-decorated nanoporous carbons:high CO2 uptake and efficient catalytic oxygen reduction[J]. J. Am. Chem. Soc., 2014,136(19):6790-6793. doi: 10.1021/ja5003907
Zhang P., Sun F., Xiang Z. H., Shen Z. G., Yun J., Cao D. P.. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy Environ. Sci., 2014,7(1):442-450. doi: 10.1039/C3EE42799D
Chen P., Wang L. K., Wang G., Gao M. R., Ge J., Yuan W. J., Shen Y. H., Xie A. J., Yu S. H.. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass:an efficient catalyst for oxygen reduction reaction[J]. Energy Environ. Sci., 2014,7(12):4095-4103. doi: 10.1039/C4EE02531H
Qu K. G., Zheng Y., Dai S., Qiao S. Z.. Polydopaminegraphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction[J]. Nanoscale, 2015,7(29):12598-12605. doi: 10.1039/C5NR03089G
Cao C. A., Zhuang X. D., Su Y. Z., Zhang Y., Zhang F., Wu D. Q., Feng X. L.. 2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction[J]. Polym. Chem., 2014,5(6):2057-2064. doi: 10.1039/C3PY01581E
Lin Z. Y., Waller G. H., Liu Y., Liu M. L., Wong C. P.. 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy, 2013,2(2):241-248. doi: 10.1016/j.nanoen.2012.09.002
Lin Z. Y., Waller G. H., Liu Y., Liu M. L., Wong C. P.. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Carbon, 2013,53:130-136. doi: 10.1016/j.carbon.2012.10.039
Yasuda S., Yu L., Kim J., Murakoshi K.. Selective nitrogen doping in graphene for oxygen reduction reactions[J]. Chem. Commun., 2013,49(83):9627-9629. doi: 10.1039/c3cc45641b
Mai Y. Y., Eisenberg A.. Controlled incorporation of particles into the central portion of vesicle walls[J]. J. Am. Chem. Soc., 2010,132(29):10078-10084. doi: 10.1021/ja1024063
Tian H., Lin Z. X., Xu F. G., Zheng J. X., Zhuang X. D., Mai Y. Y., Feng X. L.. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblockcopolymer micelles in solution[J]. Small, 2016,12(23):3155-3163. doi: 10.1002/smll.v12.23
Shahriary L., Athawale A. A.. Graphene oxide synthesized by using modified hummers approach[J]. Int. J. Renew. Energy Environ. Eng., 2014,2(01):58-63.
Liu S. H., Wang F. X., Dong R. H., Zhang T., Zhang J., Zhuang X. D., Mai Y. Y., Feng X. L.. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size[J]. Adv. Mater., 2016,28(38):8365-8370. doi: 10.1002/adma.v28.38
Kudin K. N., Ozbas B., Schniepp H. C., Prud'homme R. K., Aksay I. A., Car R.. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Lett., 2008,8(1):36-41. doi: 10.1021/nl071822y
Hu C. G., Dai L. M.. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angew. Chem. Int. Ed., 2016,55(39):11736-11758. doi: 10.1002/anie.201509982
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262