Citation: Zong-Chun Gao, Cheng-Peng Wei, Yi-Fei Han, Ming Yuan, Xu-Zhou Yan, Feng Wang. Near-Infrared-Emissive Self-assembled Polymers via the Implementation of Molecular Tweezer/Guest Complexation on a Supramolecular Coordination Complex Platform[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 399-405. doi: 10.1007/s10118-018-2090-2 shu

Near-Infrared-Emissive Self-assembled Polymers via the Implementation of Molecular Tweezer/Guest Complexation on a Supramolecular Coordination Complex Platform

  • Corresponding author: Xu-Zhou Yan, xzyan@stanford.edu Feng Wang, drfwang@ustc.edu.cn
  • Received Date: 1 October 2017
    Accepted Date: 10 November 2017
    Available Online: 15 December 2017

  • Coordination-driven self-assembly strategy has demonstrated the efficiency and versatility to construct well-ordered supramolecular coordination complexes (SCCs) such as discrete metallacycles and metallacages. In recent years, it has aroused tremendous interest to build more complexed self-assembled structures via the implementation of additional non-covalent recognition motifs on the SCCs platform. In this work, we have successfully attained this objective, with the elaborate manipulation of non-interfering pyridine-Pt2+ and molecular tweezer/guest complexation in a hierarchical self-assembly manner. The resulting SCCs-based linear supramolecular polymers exhibit intriguing NIR-emissive behaviors, primarily attributed to the presence of intermolecular Pt(Ⅱ)-Pt(Ⅱ) metal-metal interactions in the non-covalent tweezering structure. Hence, supramolecular engineering of multiple non-covalent interactions offers a feasible avenue toward functional materials with tailored properties.
  • 加载中
    1. [1]

      Chakrabarty R., Mukherjee P. S., Stang P. J.. Supramolecular coordination:self-assembly of finite two-and three-dimensional ensembles[J]. Chem. Rev., 2011,111:6810-6918. doi: 10.1021/cr200077m

    2. [2]

      Yang L., Tan X., Wang Z., Zhang X.. Supramolecular polymers:historical development, preparation, characterization, and functions Chem[J]. Rev., 2015,115:7196-7239.  

    3. [3]

      Sun B., Wang M., Lu Z., Huang M., Xu C., Li X., Chen L. J., Xu B., Yang H. B., Li X.. From ring-in-ring to sphere-in-sphere:self-assembly of discrete 2D and 3D architectures with increasing stability[J]. J. Am. Chem. Soc., 2015,137(4):1556-1564. doi: 10.1021/ja511443p

    4. [4]

      Chen L. J., Yang H. B., Shionoya M.. Chiral metallosupramolecular architectures[J]. Chem. Soc. Rev., 2017,46:2555-2576. doi: 10.1039/C7CS00173H

    5. [5]

      Perera S., Li X., Soler M., Schultz M., Wesdemiotis C., Moorefieldand C. N., Newkome G. R.. Hexameric palladium(Ⅱ) terpyridyl metallomacrocycles:assembly with 4, 4'-bipyridine and characterization by TWIM mass spectrometry[J]. Angew. Chem. Int. Ed., 2010,49:6539-6544. doi: 10.1002/anie.200906198

    6. [6]

      Li S.H., Xiao T., Lin C., Wang L.. Advanced supramolecular polymers constructed by orthogonal selfassembly[J]. Chem. Soc. Rev., 2012,41:5950-5968. doi: 10.1039/c2cs35099h

    7. [7]

      Wang W., Wang Y. X., Yang H. B.. Supramolecular transformations within discrete coordination-driven supramolecular architectures[J]. Chem. Soc. Rev., 2016,45:2656-2693. doi: 10.1039/C5CS00301F

    8. [8]

      Ji X. F., Xia D. S., Yan X., Wang H., Huang F. H.. Supramolecular polymer materials based on crown ether and pillararene host-guest recognition motifs[J]. Acta Polymerica Sinica (in Chinese), 2017,1:9-18.  

    9. [9]

      Yan X., Jiang B., Cook T. R., Zhang Y., Li J., Huang F., Yang H. B., Stang P. J.. Dendronized organoplatinum(Ⅱ) metallacyclic polymers constructed by hierarchical coordination-driven self-assembly and hydrogen-bonding interfaces[J]. J. Am. Chem. Soc., 2013,135(45):16813-16816. doi: 10.1021/ja4092193

    10. [10]

      Yan X., Li S., Pollock J. B., Cook T. R., Cheng J., Huang F., Stang P. J.. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces[J]. Proc. Natl. Acad. Sci. U.S.A., 2013,110(39):15585-11590. doi: 10.1073/pnas.1307472110

    11. [11]

      Zhou Z., Yan X., Cook T. R., Saha M. L., Stang P. J.. Engineering functionalization in a supramolecular polymer:hierarchical self-organization of triply orthogonal non-covalent interactions on a supramolecular coordination complex platform[J]. J. Am. Chem. Soc., 2016,138(3):806-809. doi: 10.1021/jacs.5b12986

    12. [12]

      Yan X., Cook T. R., Pollock J. B., Wei P., Huang F., Stang P. J.. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions[J]. J. Am. Chem. Soc., 2014,136(12):4460-4663. doi: 10.1021/ja412249k

    13. [13]

      Li Z. Y., Zhang Y., Zhang C. W., Chen L. J., Wang C., Tang W., Li X., Yang H. B.. Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[J]. J. Am. Chem. Soc., 2014,136(24):8577-8589. doi: 10.1021/ja413047r

    14. [14]

      Ni M., Zhang N., Wu W., Lin C., Wang L.. Dramatically promoted swelling of a hydrogel by pillar[J]. J. Am. Chem. Soc., 2016,138(20):6643-6649. doi: 10.1021/jacs.6b03296

    15. [15]

      Yan X., Li S., Cook T. R., Ji X., Yao Y., Pollock J. B., Shi Y., Huang F., Stang P. J.. hierarchical self-assembly:Well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(Ⅱ) metallacycles[J]. J. Am. Chem. Soc., 2013,135(38):14036-14039. doi: 10.1021/ja406877b

    16. [16]

      Wei P., Cook T. R., Yan X., Huang F., Stang P. J.. A discrete amphiphilic organoplatinum(Ⅱ) metallacycle with tunable lower critical solution temperature behavior[J]. J. Am. Chem. Soc., 2014,136(44):15497-15500. doi: 10.1021/ja5093503

    17. [17]

      Zheng W., Chen L. J., Yang G., Sun B., Wang X., Jiang B., Li X., Liu M., Chen G., Yang H. B.. Construction of smart supramolecular polymeric hydrogels cross-linked by discrete organoplatinum(Ⅱ) metallacycles via post-assembly polymerization[J]. J. Am. Chem. Soc., 2016,138(14):4927-4937. doi: 10.1021/jacs.6b01089

    18. [18]

      Yan X., Cook T. R., Wang P., Huang F., Stang P. J.. Highly emissive platinum(Ⅱ) metallacages[J]. Nat. Chem., 2015,7:342-348. doi: 10.1038/nchem.2201

    19. [19]

      Jiang B., Zhang J., Zheng W., Chen L. J., Yin G. Q., Wang Y. X., Sun B., Li X. P., Yang H. B.. Construction of alkynylplatinum(Ⅱ) bzimpy-functionalizedmetallacycles and their hierarchical self-assembly behavior insolution promoted by Pt…Pt and p-p interactions[J]. Chem. Eur. J., 2016,22:14664-14671. doi: 10.1002/chem.201601682

    20. [20]

      Zheng W., Yang G., Jiang S. T., Shao N., Yin G. Q., Xu L., Li X., Chen G., Yang H. B.. A tetraphenylethylene (TPE)-based supra-amphiphilic organoplatinum(Ⅱ) metallacycle and its self-assembly behavior[J]. Mater. Chem. Front., 2017,1:1823-1828. doi: 10.1039/C7QM00107J

    21. [21]

      Huang C. B., Xu L., Zhu J. L., Wang Y. X., Li X., Yang H. B.. Real-time monitoring the dynamics of coordination-driven self-assembly by fluorescence-resonance energy transfer[J]. J. Am. Chem. Soc., 2017,139(28):9459-9462. doi: 10.1021/jacs.7b04659

    22. [22]

      Fu T., Ao L., Gao Z., Zhang X., Wang F.. Advances on supramolecular assembly of cyclometalated platinum(Ⅱ) complexes[J]. Chin. Chem. Lett., 2016,27:1147-1154. doi: 10.1016/j.cclet.2016.06.054

    23. [23]

      Tian Y. K., Shi Y. G., Yang Z. S., Wang F.. Responsive supramolecular polymers based on the bis[J]. Angew. Chem. Int. Ed., 2014,53:6090-6094. doi: 10.1002/anie.201402192

    24. [24]

      Yang Z. S., Tian Y., Li Z., Ao L., Gao Z., Wang F.. Construction of linear supramolecular polymers on the basis of non-covalent molecular tweezer/guest recognition[J]. Acta Polymerica Sinica (in Chinese), 2017(1):12-128.  

    25. [25]

      Tanaka Y., Wong K. M. C., Yam V. W. W.. Phosphorescent molecular tweezers based on alkynylplatinum(Ⅱ) terpyridine system:turning on of NIR emission via heterologous Pt/M interactions(M=Pt, Pd, Au and Au)[J]. Chem. Sci., 2012,3:1185-1191. doi: 10.1039/c2sc00935h

    26. [26]

      Tanaka Y., Wong K. M. C., Yam V. W. W.. Platinum-based phosphorescent double-decker tweezers:a strategy for extended heterologous metal-metal interactions[J]. Angew. Chem. Int. Ed., 2013,52:14117-14120. doi: 10.1002/anie.201306025

    27. [27]

      Yam V. W. W., Au V. K. M., Leung S. Y. L.. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes[J]. Chem. Rev., 2015,115:7589-7728. doi: 10.1021/acs.chemrev.5b00074

    28. [28]

      Cheng G., Chow P. K., Kui S. C. F., Kwok C. C., Che C. M.. High-efficiency polymer light-emitting devices with robust phosphorescent platinum(Ⅱ) emitters containing tetradentate dianionic O^N^C^N ligands[J]. Adv. Mater., 2013,25:6765-6770. doi: 10.1002/adma.v25.46

    29. [29]

      Fung S. K., Zou T., Cao B., Chen T., To W. P., Yang C., Lok C. N., Che C. M.. Luminescent platinum(Ⅱ) complexes with functionalized N-heterocyclic carbene ordiphosphine selectively probe mismatchedand abasic DNA[J]. Nat. Commun., 2016,7:10655-10663. doi: 10.1038/ncomms10655

    30. [30]

      Chan A. K. W., Lam W. H., Tanaka Y., Wong K. M. C., Yam V. W. W.. Multiaddressable molecular rectangles with reversiblehost-guest interactions:modulation of pH-controlled guest release and capture[J]. Proc. Natl. Acad. Sci. U.S.A., 2015,112(3):690-695. doi: 10.1073/pnas.1423709112

    31. [31]

      Yeung H. L. A., Tam A. Y. Y., Leung S.Y. L, Yam V. W. W.. Supramolecular assembly of platinum-containingpolyhedral oligomeric silsesquioxanes:an interplay of intermolecular interactions and a correlationbetween structural modifications andmorphological transformations[J]. Chem. Sci., 2017,8:2267-2276. doi: 10.1039/C6SC04169H

    32. [32]

      Li Z., Han Y., Gao Z., Wang F.. Supramolecular engineering of discrete Pt(Ⅱ)…Pt(Ⅱ) interactions forvisible-light photocatalysis[J]. ACS Catal., 2017,7(7):4676-4681. doi: 10.1021/acscatal.7b00709

    33. [33]

      Kryschenko Y. K., Seidel S. R., Arif A. M., Stang P. J.. Coordination-driven self-assembly of predesigned supramolecular triangles[J]. J. Am. Chem. Soc., 2003,125:5193-5198. doi: 10.1021/ja030018k

    34. [34]

      Gao Z., Han Y., Chen S., Li Z., Tong H., Wang F.. Photoresponsive supramolecular polymer networks via hydrogen bond assisted molecular tweezer/guest complexation[J]. ACS Macro Lett., 2017,6(5):541-545. doi: 10.1021/acsmacrolett.7b00241

    35. [35]

      Liu Y., Yu Y., Gao J., Wang Z., Zhang X.. Water-soluble supramolecular polymerization driven by multiple hoststabilized charge-transfer interactions[J]. Angew. Chem. Int. Ed.,, 2010,49:6576-6579. doi: 10.1002/anie.201002415

    36. [36]

      Liu Y., Fang R. C., Tan X., Wang Z. Q., Zhang X.. Supramolecular polymerization at low monomer concentration:enhancing intermolecular interaction and suppressing cyclization by rational molecular design[J]. Chem. Eur. J.,, 2012,18:15650-15654. doi: 10.1002/chem.201202985

    37. [37]

      Tian Y. J., Shi E. T., Tian Y. K., Yao R. S., Wang F.. Cooperative complexation of amino acid derivatives to platinum acetylide-based bolaamphiphile[J]. Org. Lett., 2014,16(12):3180-3183. doi: 10.1021/ol500752b

    38. [38]

      Xu J. F., Chen L., Zhang X.. How to make weak noncovalent interactions stronger[J]. Chem. Eur. J., 2015,21:11938-11946. doi: 10.1002/chem.v21.34

  • 加载中
    1. [1]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    4. [4]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    5. [5]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    6. [6]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    7. [7]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    8. [8]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    9. [9]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    10. [10]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    11. [11]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    12. [12]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    15. [15]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    16. [16]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    17. [17]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    18. [18]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return