Citation: Yang Bai, Fang-Yuan Xie, Wei Tian. Controlled Self-assembly of Thermo-responsive Amphiphilic H-shaped Polymer for Adjustable Drug Release[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 406-416. doi: 10.1007/s10118-018-2086-y shu

Controlled Self-assembly of Thermo-responsive Amphiphilic H-shaped Polymer for Adjustable Drug Release

  • Corresponding author: Wei Tian, happytw_3000@nwpu.edu.cn
  • Received Date: 5 October 2017
    Accepted Date: 6 November 2017
    Available Online: 18 December 2017

  • Despite the fact that some progress has been made in the self-assembly of H-shaped polymers, the corresponding self-assemblies that respond to external stimulus and are further utilized to adjust the release of drugs are still deficient. The stimuli-responsive segments with amphiphilic H-shaped structure are generally expected to enhance the controllability of self-assembly process. The synthesis and self-assembly behavior of thermo-responsive amphiphilic H-shaped polymers with poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(N-isopropyl acrylamide) (PNIPAM) as building blocks are reported in this paper. The inner architecture structure and size of complex micelles formed by H-shaped self-assemblies were effectively adjusted when the solution temperature was increased above the lower critical solution temperature of PNIPAM segments. Furthermore, it was found that the architecture of self-assemblies underwent a transition from the complex micelles based on primary micelles with hybrid PEG/PNIPAM shells to large complex micelles based on primary micelles with hybrid PTHF/PNIPAM cores and PEG shells during the thermal-induced self-assembly process. The adjustable release rate of doxorubicin (DOX) from the DOX-loaded complex micelles and basic cell experiments further proved the feasibility of these self-assemblies as the thermal-responsive drug delivery system.
  • 加载中
    1. [1]

      Liu Y. Y., Zhong Y. B., Nan J. K., Tian W.. Star polymers with both temperature sensitivity and inclusion functionalities[J]. Macromolecules, 2010,43(24):10221-10230. doi: 10.1021/ma1019973

    2. [2]

      Liu H., Li C. H., Liu H. W., Liu S. Y.. pH-Responsive supramolecular self-assembly of well-defined zwitterionic ABC miktoarm star terpolymers[J]. Langmuir, 2009,25(8):4724-4734. doi: 10.1021/la803813r

    3. [3]

      Pang X. C., Zhao L., Akinc M., Kim J. K., Lin Z. Q.. Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles[J]. Macromolecules, 2011,44:3746-3752. doi: 10.1021/ma200594j

    4. [4]

      Huang X. Y., Wang D. L., Dong R. J., Tu C. L., Zhu B. S., Yan D. Y., Zhu X. Y.. Supramolecular ABC miktoarm star terpolymer based on host-guest inclusion complexation[J]. Macromolecules, 2012,45:5941-5947. doi: 10.1021/ma300693h

    5. [5]

      Mu C. G., Fan X. D., Tian W., Bai Y., Zhou X.. Miktoarm star polymers with poly(N-isopropylacryamide) or poly(oligo(ethylene glycol) methacrylate) as building blocks:synthesis and comparison of thermally-responsive behaviors[J]. Polym. Chem., 2012,3(5):1137-1149. doi: 10.1039/c2py20029e

    6. [6]

      Li Y. G., Shi P. J., P an, C. Y.. Synthesis, characterization, and thermal behavior of H-shaped copolymers prepared by atom transfer radical polymerization[J]. Macromolecules, 2004,37:5190-5195. doi: 10.1021/ma049676v

    7. [7]

      Yu X. F., Shi T. F., Zhang G., An L. J.. Synthesis of asymmetric H-shaped block copolymer by the combination of atom transfer radical polymerization and living anionic polymerization[J]. Polymer, 2006,47:1538-1546. doi: 10.1016/j.polymer.2006.01.005

    8. [8]

      Liu H. H., Li S. X., Zhang M. J., Shao W., Zhao Y. L.. Facile synthesis of ABCDE-type H-shaped quintopolymers by combination of ATRP, ROP, and click chemistry and their potential applications as drug carriers[J]. J. Polym. Sci., Part A:Polym. Chem., 2012,50:4705-4716. doi: 10.1002/pola.v50.22

    9. [9]

      Zhang Z. X., Liu X., Xu F. J., Loh X. J., Kang E. T., Neoh K. G., Li J.. Pseudo-block copolymer based on star-shaped poly(N-isopropylacylamide) with a β-Cyclodextrin core and guest-bearing PEG:controlling thermoresponsive through supramolecular self-assembly[J]. Macromolecules, 2008,41:5967-5970. doi: 10.1021/ma8009646

    10. [10]

      Bai Y., Fan X. D., Tian W., Yao H., Zhuo L. H., Zhang H. T., Fan W. W., Yang Z., Zhang W. B.. Synthesis and thermally-triggered self-assembly behaviors of a dumbbellshaped polymer carring β-cyclodextrin at branch points[J]. Polymer, 2013,54:3566-3573. doi: 10.1016/j.polymer.2013.05.042

    11. [11]

      Cao Z. L., Chen M. J., Hu Y. Y., Dong S. L., Cui J. W., Hao J. C.. Tunable assembly and disassembly of responsive supramolecular polymer brushes[J]. Polym. Chem., 2017,8:2764-2772. doi: 10.1039/C7PY00149E

    12. [12]

      Wu J. Y., Cao C.. Sliding supramolecular polymer brushes with tunable amphiphilicity:one-step parallel click synthesis and self-assembly[J]. Macromolecules, 2010,43:7139-7146. doi: 10.1021/ma100956y

    13. [13]

      Feng A. C., Yan Q., Zhang H. J., Peng L., Yuan J. J.. Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes[J]. Chem. Commun., 2014,50:4740-4742. doi: 10.1039/c4cc00463a

    14. [14]

      Roling O., Mardyukov A., Krings J. A., Studer A., Ravoo B. J.. Polymer brushes exhibiting versatile supramolecular interactions grown by nitroxide-mediated polymerization and structured via microcontact chemistry[J]. Macromolecules, 2014,47:2411-2419. doi: 10.1021/ma500043b

    15. [15]

      Xu Y. Y., Bolisetty S., Ballauff M., Müller A. H. E.. Switching the morphologies of cylindrical polycation brushes by ionic and supramolecular inclusion complexes[J]. J. Am. Chem. Soc., 2009,131:1640-1641. doi: 10.1021/ja807302j

    16. [16]

      Yang B., Huang Q. T., Liu H. H., Zhao Y. L., Du J. Z.. Hairy cyclinders based on a coil-comb-coil copolymer[J]. RSC Adv., 2016,6:104911-104918. doi: 10.1039/C6RA20862B

    17. [17]

      Jiang X., Zhang M. J., Li S. X., Shao W., Zhao Y. L.. Facile synthesis and versatile topological transformation of mono-cleavable symmetric starlike terpolymers[J]. Chem. Commun., 2012,48:9906-9908. doi: 10.1039/c2cc35275c

    18. [18]

      Gao C., Yan D. Y.. Hyperbranched polymers:from synthesis to applications[J]. Prog. Polym. Sci., 2004,29:183-275. doi: 10.1016/j.progpolymsci.2003.12.002

    19. [19]

      Dong R. J., Liu Y., Zhou Y. F., Yan D. Y., Zhu X. Y.. Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions[J]. Polym. Chem., 2011,2:2771-2774. doi: 10.1039/c1py00426c

    20. [20]

      Ge Z. S., Liu H., Zhang Y. F., Liu S. Y.. Supramolecular thermoresponsive hyperbranched polymers constructed from poly(N-isopropylacrylamide) containing one adamantyl and two β-Cyclodextrin terminal moieties[J]. Macromol. Rapid Commun., 2012,32:68-73.  

    21. [21]

      Bai Y., Fan X. D., Tian W., Liu T. T., Yao H., Yang Z., Zhang H. T., Zhang W. B.. Morphology transitions of supramolecular hyperbranched polymers induced by double supramolecular driving forces[J]. Polym. Chem., 2015,6:752-757.  

    22. [22]

      Voit B. I., Lederer A.. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects[J]. Chem. Rev., 2009,109:5924-5973. doi: 10.1021/cr900068q

    23. [23]

      Chen P. Y., Li Z.. The design of second-order nonlinear optical dendrimers:from "branch only" to "root containing"[J]. Chinese J. Polym. Sci., 2017,35(7):793-798. doi: 10.1007/s10118-017-1949-y

    24. [24]

      Dong R. J., Zhou Y. F., Zhu X. Y.. Supramolecular dendritic polymers:from synthesis to application[J]. Accounts Chem. Res., 2014,47:2006-2016. doi: 10.1021/ar500057e

    25. [25]

      Munteanu M., Kolb U., Ritter H.. Supramolecular nanocycles comprising β-cyclodextrin-click-ferrocene units:rings of rings of rings[J]. Macromol. Rapid Commun., 2010,31:616-618. doi: 10.1002/marc.v31:7

    26. [26]

      Ge Z. S., Zhou Y. M., Xu J., Liu H. W., Chen D. Y., Liu S. Y.. High-efficiency preparation of macrocyclic diblock copolymers via selective click reaction in micellar media[J]. J. Am. Chem. Soc., 2009,131:1628-1629. doi: 10.1021/ja808772z

    27. [27]

      Huang Z. H., Zhou Y. Y., Wang Z. M., Li Y., Zhang W., Zhou N. C., Zhang Z. B., Zhu X. L.. Recent advances of CuAAC click reaction in building cyclic polymer[J]. Chinese J. Polym. Sci., 2017,35(3):317-341. doi: 10.1007/s10118-017-1902-0

    28. [28]

      Sonke S., Tomalia D. A.. Dendrimers in biomedical applications-reflections on the field[J]. Adv. Drug Deliv. Rev., 2005,57:2106-2129. doi: 10.1016/j.addr.2005.09.018

    29. [29]

      Lapienis G.. Star-shaped polymers having PEO arms[J]. Prog. Polym. Sci., 2009,34:852-892. doi: 10.1016/j.progpolymsci.2009.04.006

    30. [30]

      Konkolewicz D., Monteiro J. M., Perrier S.. Dendritic and hyperbranched polymers from macromolecular units:elegant approaches to the synthesis of functional polymers[J]. Macromolecules, 2011,44:7076-7087.  

    31. [31]

      Boas U., Heegaard P. M. H.. Dentrimers in drug research[J]. Chem. Soc. Rev., 2004,33:43-63. doi: 10.1039/b309043b

    32. [32]

      He X. H., Wu X. M., Cai X., Lin S. L., Xie M. R., Zhu X. Y., Yan D. Y.. Functionalization of magnetic nanoparticles with dentritic-linear-brush-like triblock copolymers and their drug release properties[J]. Langmuir, 2012,28:11938-11947.  

    33. [33]

      Cong Y., Li B. Y., Han Y. C., Li Y. G., Pan C. Y.. Self-assembly of H-shaped block copolymers[J]. Macromolecules, 2005,38:9836-9846. doi: 10.1021/ma0515679

    34. [34]

      Bai Y., Fan X. D., Tian W., Mu C. G., Yang Z., Fan W. W., Zhang H. T., Zhang W. B.. Large complex micelles formed from amphiphilic H-shaped terpolymers with adjustable block ratio by ultrasonic vibration[J]. Polymer, 2013,54:1734-1738. doi: 10.1016/j.polymer.2013.01.054

    35. [35]

      Wang G. T., Wang C., Wang Z. Q., Zhang X.. H-shaped supra-amphiphiles based on dynamic covalent bond[J]. Langmuir, 2012,28:14567-14572. doi: 10.1021/la303272b

    36. [36]

      Wei Y. H., Huang W. H., Li B. Y., Han Y. C., Pan C. Y.. Square lamellar structure having phase-separated microdomain in H-shaped block copolymer thin film[J]. Macromol. Rapid Commun., 2008,29:1378-1384. doi: 10.1002/marc.200800210

    37. [37]

      Yoshida A., Honda S., Goto H., Sugimoto H.. Synthesis of H-shaped carbon-dioxide-derived poly(propylene carbonate) for topology-based reduction of the glass transition temperature[J]. Polym. Chem., 2014,5:1883-1890. doi: 10.1039/C3PY01319G

    38. [38]

      Altintas O., Schulze-Suenninghausen D., Luy B., Barner-Kowollik C.. Facile preparation of supramolecular H-shaped (ter)polymers via multiple hydrogen bonding[J]. ACS Macro Lett., 2013,2:211-216. doi: 10.1021/mz400066r

    39. [39]

      Yuan W. Z., Zhang J. C., Zou H., R en, J .. Synthesis, crystalline morphologies, self-Assembly, and properties of H-shaped amphiphilic dually responsive terpolymers[J]. J. Polym. Sci., Part A:Polym. Chem., 2012,50:2541-2552. doi: 10.1002/pola.v50.13

    40. [40]

      Zou P., Pan C. Y.. Multiple vesicle morphologies formed from reactive H-shaped block copolymers[J]. Macromol. Rapid Commun., 2008,29:763-771. doi: 10.1002/(ISSN)1521-3927

    41. [41]

      Huang Q. T., Yang B., Liu H. H., Zhao Y. L., Du J. Z.. Silkworm cocoons by cylinders self-assembled from H-shaped alternating polymer brushes[J]. Polym. Chem., 2015,6:886-890. doi: 10.1039/C4PY01484G

    42. [42]

      Schmidt. B. V. K. J., Barner-Kowollik C.. Supramolecular Xand H-shaped star block copolymers via cyclodextrin-driven supramolecular self-assembly[J]. Polym. Chem., 2014,5:2461-2472. doi: 10.1039/c3py01580g

    43. [43]

      Ji R., Chen J., Yang T., Song C. C., Li L., Du F. S., Li Z.C.. Shell-sheddable, pH-sensitive supramolecular nanoparticles based on ortho ester-modified cyclodextrin and adamantly PEG[J]. Biomacromolecules, 2014,15:3531-3539. doi: 10.1021/bm500711c

    44. [44]

      Tian Z., Wang M., Zhang A.Y., Feng Z. G.. Preparation and evaluation of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release[J]. Polymer, 2008,49:446-454. doi: 10.1016/j.polymer.2007.11.048

    45. [45]

      Yao C. G., Wang X. R., Liu G. H., Hu J. M., Liu S. Y.. Distinct morphological transitions of photoreactive and thermoresponsive vesicles for controlled release and nanoreactors[J]. Macromolecules, 2016,49:8282-8295. doi: 10.1021/acs.macromol.6b01374

    46. [46]

      Gheorghe A., Matsuno A., Reiser O.. Expedient immobilization of TEMPO by copper-catalyzed azide-alkyne[J]. Adv. Synth. Catal., 2006,348:1016-1020. doi: 10.1002/(ISSN)1615-4169

    47. [47]

      Schild H. G.. Poly(N-isopropylacrylamide):experiment, theory and application[J]. Prog. Polym. Sci., 1992,17:163-249. doi: 10.1016/0079-6700(92)90023-R

    48. [48]

      Lutz J. F., Akdemir Ö., Hoth A.. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:is the age of poly(NIPAM) over?[J]. J. Am. Chem. Soc., 2006,128:13046-13047. doi: 10.1021/ja065324n

    49. [49]

      Ohashi H., Hiraoka Y., Yamaguchi T.. An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property[J]. Macromolecules, 2006,39:2614-2620. doi: 10.1021/ma052509q

    50. [50]

      Sun S. T., Wu P. Y., Zhang W. D., Zhang W., Zhu X. L.. Effect of structural constraint on dynamic self-assembly behavior of PNIPAM-based nonlinear multihydrophilic block copolymers[J]. Soft Matter, 2013,9:1807-1816. doi: 10.1039/C2SM27183D

    51. [51]

      Murugesan M., Scibioh M. A., Jayakumar R.. Structural transition of nonionic peptide aggregates in aqueous medium[J]. Langmuir, 1999,15:5467-5473. doi: 10.1021/la9814079

    52. [52]

      Liu T. T., Tian W., Song Y. L., Bai Y., Wei P. L., Yao H., Yan H. X.. Reversible self-assembly of backbonethermoresponsive long chain hyperbranched poly(N-isopropyl acrylamide)[J]. Polymers, 2016,8:33-47. doi: 10.3390/polym8020033

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    8. [8]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    9. [9]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    10. [10]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    11. [11]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    12. [12]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    13. [13]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    14. [14]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    15. [15]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    16. [16]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    17. [17]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    18. [18]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    19. [19]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    20. [20]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

Metrics
  • PDF Downloads(0)
  • Abstract views(822)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return