Citation: Zhen Wang, Shenglong Liao, Yapei Wang. Supramolecular Polymer Emulsifiers for One-step Complex Emulsions[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 288-296. doi: 10.1007/s10118-018-2084-0 shu

Supramolecular Polymer Emulsifiers for One-step Complex Emulsions

  • Corresponding author: Yapei Wang, yapeiwang@ruc.edu.cn
  • Received Date: 27 September 2017
    Accepted Date: 12 November 2017
    Available Online: 4 December 2017

  • Complex emulsions, such as double emulsions and high-internal-phase emulsions, have shown great applications in the fields of drug delivery, sensing, catalysis, oil-water separation and self-healing materials. Their controllable preparation is at the forefront of interface and material science. Surfactants and polymers have been widely used as emulsifiers for building complex emulsions. Yet some inherent disadvantages exist including multi-step emulsifications and low production efficiency. Alternatively, supramolecular polymer emulsifier for complex emulsions via one-step emulsification is rising as a new strategy due to the ease of preparation. In this feature article, we review our recent progresses in using supramolecular polymer emulsifiers for the preparation of complex emulsions. Double emulsions and high-internal-phase emulsions are successfully prepared via one-step emulsification with the help of different supramolecular interactions including electrostatic, hydrogen bond, coordination interaction and dynamic covalent bond, which will be particularly emphasized in detail. In the end, a comprehensive prospect is given for the future development of this field. This article is expected to provide new inspirations for preparing complex emulsions via supramolecular routes.
  • 加载中
    1. [1]

      Tang J., Quinlan P. J., Tam K. C.. Stimuli-responsive pickering emulsions:recent advances and potential applications[J]. Soft Matter, 2015,11(18):3512-3529. doi: 10.1039/C5SM00247H

    2. [2]

      Gupta A., Eral H. B., Hatton T. A., Doyle P. S.. Nanoemulsions:formation, properties and applications[J]. Soft Matter, 2016,12(11):2826-2841. doi: 10.1039/C5SM02958A

    3. [3]

      Khan A. Y., Talegaonkar S., Iqbal Z., Ahmed F. J., Khar R. K.. Multiple emulsions:an overview[J]. Curr. Drug Deliv., 2006,3(4):429-43. doi: 10.2174/156720106778559056

    4. [4]

      Dickinson E.. Stabilising emulsion-based colloidal structures with mixed food ingredients[J]. J. Sci. Food Agr., 2013,93(4):710-721. doi: 10.1002/jsfa.2013.93.issue-4

    5. [5]

      McClements D. J.. Edible nanoemulsions:fabrication, properties, and functional performance[J]. Soft Matter, 2011,7(6):2297-2316. doi: 10.1039/C0SM00549E

    6. [6]

      Shi Y., Yu Q., Sun C., Dong F., Yang G., Feng J.. Progress in research work field with respect to physical stability of emulsion oil in water for pesticides[J]. China Surfactant Detergent and Cosmetics, 2016,46(3):173-177.  

    7. [7]

      Feng J., Xiang S., Qian K., Zhu F., Yu Q., Wu X.. Characterization methods for emulsion stability and their applications in the research and development for pesticide emulsions oil in water[J]. J. Pestic. Sci., 2015,17(1):15-26.

    8. [8]

      He L., Lin F., Li X., Sui H., Xu Z.. Interfacial sciences in unconventional petroleum production:from fundamentals to applications[J]. Chem. Soc. Rev., 2015,44(15):5446-5494. doi: 10.1039/C5CS00102A

    9. [9]

      Yang H., Fu L., Wei L., Liang J., Binks B. P.. Compartmentalization of incompatible reagents within Pickering emulsion droplets for one-pot cascade reactions[J]. J. Am. Chem. Soc., 2015,137(3):1362-1371. doi: 10.1021/ja512337z

    10. [10]

      Yang H., Zhou T., Zhang W.. A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion[J]. Angew. Chem. Int. Ed., 2013,52(29):7455-7459. doi: 10.1002/anie.201300534

    11. [11]

      Liang F. X., Yang Z. Z.. Progress in Janus composites toward interfacial engineering[J]. Acta Polymerica Sinica (in Chinese), 2017(6):883-892.  

    12. [12]

      Cao Z. Q., Wang G. J., Chen Y., Lang F. X., Yang Z. Z.. Light-triggered responsive Janus composite nanosheets[J]. Macromolecules, 2015,48(19):7256-7261. doi: 10.1021/acs.macromol.5b01257

    13. [13]

      Zhao Z. G., Liang F. X., Zhang G. L., Ji X. Y., Wang Q., Qu X. Z., Song X. M., Yang Z. Z.. Dually responsive Janus composite nanosheets[J]. Macromolecules, 2015,48(11):3598-3603. doi: 10.1021/acs.macromol.5b00365

    14. [14]

      Xu J. P., Li J., Yang Y., Wang K., Xu N., Li J. Y., Liang R. J., Shen L., Xie X. L., Tao J., Zhu J. T.. Block copolymer capsules with structure-dependent release behavior[J]. Angew. Chem. Int. Ed., 2016,55(47):14633-14637. doi: 10.1002/anie.201607982

    15. [15]

      Hussain M., Xie J., Hou Z. Y., Shezad K., Xu J. P., Wang K., Gao Y. J., Shen L., Zhu J. T.. Regulation of drug release by tuning surface textures of biodegradable polymer microparticles[J]. ACS Appl. Mater. Interfaces, 2017,9(16):14391-14400. doi: 10.1021/acsami.7b02002

    16. [16]

      Wang Z., Cao Y. Y., Zhang X. Y., Wang D. G., Liu M., Xie Z. G., Wang Y. P.. Rapid self-assembly of block copolymers for flower-like particles with high throughput[J]. Langmuir, 2016,32(50):13517-13524. doi: 10.1021/acs.langmuir.6b03940

    17. [17]

      Xia J. H., Ji S. B., Xu H. P.. Diselenide covalent chemistry at the interface:stabilizing an asymmetric diselenide-containing polymer via micelle formation[J]. Polym. Chem., 2016,7(44):6708-6713. doi: 10.1039/C6PY01610C

    18. [18]

      Wang W. C., Pan Y. X., Shi K., Peng C., Jia X. L.. Hierarchical porous polymer beads prepared by polymerizationinduced phase separation and emulsion-template in a microfluidic device[J]. Chinese J. Polym. Sci., 2014,32(12):1646-1654. doi: 10.1007/s10118-014-1547-1

    19. [19]

      Liang J., Zhang G., Wang G., Li B., Wu L.. Construction of ordered porous polymer film and functionality of pore structure via microemulsion template method[J]. Chinese Sci. Bull., 2017,62(6):563-575. doi: 10.1360/N972016-00218

    20. [20]

      Yang X. Y., Chen L. H., Li Y., Rooke J. C., Sanchez C., Su B. L.. Hierarchically porous materials:synthesis strategies and structure design[J]. Chem. Soc. Rev., 2017,46(2):481-558. doi: 10.1039/C6CS00829A

    21. [21]

      Liu L., Jiang L., Xie X., Yang S.. Amphiphilic carbonaceous microsphere-stabilized oil-in-water Pickering emulsions and their applications in enzyme catalysis[J]. ChemPlusChem, 2016,81(7):629-636. doi: 10.1002/cplu.201600127

    22. [22]

      Chen Z., Zhao C., Ju E., Ji H., Ren J., Binks B. P., Qu X.. Design of surface-active artificial enzyme particles to stabilize Pickering emulsions for high-performance biphasic biocatalysis[J]. Adv. Mater., 2016,28(8):1682-1688. doi: 10.1002/adma.201504557

    23. [23]

      Gao H., Pan J., Han D., Zhang Y., Shi W., Zeng J., Peng Y., Yan Y.. Facile synthesis of microcellular foam catalysts with adjustable hierarchical porous structure, acid-base strength and wettability for biomass energy conversion[J]. J. Mater. Chem. A, 2015,3(25):13507-13518. doi: 10.1039/C5TA02239H

    24. [24]

      Gu X., Ning Y., Yang Y., Wang C.. One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery[J]. RSC Adv., 2014,4(7):3211-3218. doi: 10.1039/C3RA44993A

    25. [25]

      Pulko I., Krajnc P.. High internal phase emulsion templating-a path to hierarchically porous functional polymers[J]. Macromol. Rapid. Comm., 2012,33(20):1731-1746. doi: 10.1002/marc.v33.20

    26. [26]

      Brun N., Ungureanu S., Deleuze H., Backov R.. Hybrid foams, colloids and beyond:from design to applications[J]. Chem. Soc. Rev., 2011,40(2):771-788. doi: 10.1039/B920518G

    27. [27]

      Pulko I., Wall J., Krajnc P., Cameron N. R.. Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking:efficient nucleophilic catalyst supports[J]. Chem. Eur. J., 2010,16(8):2350-2354. doi: 10.1002/chem.v16:8

    28. [28]

      Zhang N., Zhong S., Chen T., Zhou Y., Jiang W.. Emulsion-derived hierarchically porous polystyrene solid foam for oil removal from aqueous environment[J]. RSC Adv., 2017,7(37):22946-22953. doi: 10.1039/C7RA02953E

    29. [29]

      Na X. M., Gao F., Zhang L. Y., Su Z. G., Ma G. H.. Biodegradable microcapsules prepared by self-healing of porous microspheres[J]. ACS Macro Lett., 2012,1(6):697-700. doi: 10.1021/mz200222d

    30. [30]

      Wang D. G., Xiao L. F., Zhang X. Y., Zhang K., Wang Y. P.. Emulsion templating cyclic polymers as microscopic particles with tunable porous morphology[J]. Langmuir, 2016,32(6):1460-1467. doi: 10.1021/acs.langmuir.5b04159

    31. [31]

      Feng S. B., Fu D. H., Nie L., Zou P., Suo J. P.. A detailed view of PLGA-mPEG microsphere formation by double emulsion solvent evaporation method[J]. Chinese J. Polym. Sci., 2015,33(7):955-963. doi: 10.1007/s10118-015-1660-9

    32. [32]

      Wang Q. G., Liang F. X., Wang Q., Qu X. Z., Yang Z. Z.. Responsive composite Janus cages[J]. Chinese J. Polym. Sci., 2015,33(10):1462-1469. doi: 10.1007/s10118-015-1691-2

    33. [33]

      Zhang T., Xu Z., Gui H., Guo Q.. Emulsion-templated, macroporous hydrogels for enhancing water efficiency in fighting fires[J]. J. Mater. Chem. A, 2017,5(21):10161-10164. doi: 10.1039/C7TA02319G

    34. [34]

      Brown P., Butts C. P., Eastoe J.. Stimuli-responsive surfactants[J]. Soft Matter, 2013,9(8):2365-2374. doi: 10.1039/c3sm27716j

    35. [35]

      Liu Y., Jessop P. G., Cunningham M., Eckert C. A., Liotta C. L.. Switchable surfactants[J]. Science, 2006,313(5789):958-960. doi: 10.1126/science.1128142

    36. [36]

      Huang X. P., Qian Q. P., Wang Y. P.. Anisotropic particles from a one-pot double emulsion induced by partial wetting and their triggered release[J]. Small, 2014,10(7):1412-1420. doi: 10.1002/smll.v10.7

    37. [37]

      Macon A. L. B., Rehman S. U., Bell R. V., Weaver J. V. M.. Reversible assembly of pH responsive branched copolymer-stabilised emulsion via electrostatic forces[J]. Chem. Commun., 2016,52(1):136-139. doi: 10.1039/C5CC06636K

    38. [38]

      Hanson J. A., Chang C. B., Graves S. M., Li Z., Mason T. G., Deming T. J.. Nanoscale double emulsions stabilized by single-component block copolypeptides[J]. Nature, 2008,455(7209):85-88. doi: 10.1038/nature07197

    39. [39]

      Hong L., Sun G., Cai J., Ngai T.. One-step formation of W/O/W multiple emulsions stabilized by single amphiphilic block copolymers[J]. Langmuir, 2012,28(5):2332-2336. doi: 10.1021/la205108w

    40. [40]

      Chen Q., Shi T., Han F., Li Z., Lin C., Zhao P.. Porous polystyrene monoliths and microparticles prepared from core cross-linked star (CCS) polymers-stabilized emulsions[J]. Sci. Rep., 2017,78493. doi: 10.1038/s41598-017-09216-y

    41. [41]

      Brusotti G., Calleri E., Milanese C., Catenacci L., Marrubini G., Sorrenti M., Girella A., Massolini G., Tripodo G.. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses[J]. Polym. Chem., 2016,7(48):7436-7445. doi: 10.1039/C6PY01992G

    42. [42]

      Woodward R. T., Slater R. A., Higgins S., Rannard S. P., Cooper A. I., Royles B. J. L., Findlay P. H., Weaver J. V. M.. Controlling responsive emulsion properties via polymer design[J]. Chem. Commun., 2009(24):3554-3556. doi: 10.1039/b904320a

    43. [43]

      Verdonck B., Goethals E. J., Du Prez F. E.. Block copolymers of methyl vinyl ether and isobutyl vinyl ether with thermo-adjustable amphiphilic properties[J]. Macromol. Chem. Phys., 2003,204(17):2090-2098. doi: 10.1002/(ISSN)1521-3935

    44. [44]

      Sun G. Q., Liu M., Zhou X., Hong L. Z., Ngai T.. Influence of asymmetric ratio of amphiphilic diblock copolymers on one-step formation and stability of multiple emulsions[J]. Colloid. Surface. A, 2014,454:16-22. doi: 10.1016/j.colsurfa.2014.04.015

    45. [45]

      Raduan N. H., Horozov T. S., Georgiou T. K.. "Comb-like" non-ionic polymeric macrosurfactants[J]. Soft Matter, 2010,6(10):2321-2329. doi: 10.1039/b926822g

    46. [46]

      Perrin P., Monfreux N., Lafuma F.. Highly hydrophobically modified polyelectrolytes stabilizing macroemulsions:relationship between copolymer structure and emulsion type[J]. Colloid. Polym. Sci., 1999,277(1):89-94. doi: 10.1007/s003960050372

    47. [47]

      Cho H. K., Cho K. S., Cho J. H., Choi S. W., Kim J. H., Cheong I. W.. Synthesis and characterization of PEO-PCL-PEO triblock copolymers:effects of the PCL chain length on the physical property of W-1/O/W-2 multiple emulsions[J]. Colloid. Surface B, 2008,65(1):61-68. doi: 10.1016/j.colsurfb.2008.02.017

    48. [48]

      Garti N., Bisperink C.. Double emulsions:progress and applications[J]. Curr. Opin. Colloid In., 1998,3(6):657-667. doi: 10.1016/S1359-0294(98)80096-4

    49. [49]

      Liang F., Shen K., Qu X., Zhang C., Wang Q., Li J., Liu J., Yang Z.. Inorganic Janus nanosheets[J]. Angew. Chem. Int. Ed., 2011,50(10):2379-2382. doi: 10.1002/anie.201007519

    50. [50]

      Datta S. S., Abbaspourrad A., Amstad E., Fan J., Kim S. H., Romanowsky M., Shum H. C., Sun B., Utada A. S., Windbergs M., Zhou S., Weitz D. A.. 25th anniversary article:double emulsion templated solid microcapsules:mechanics and controlled release[J]. Adv. Mater., 2014,26(14):2205-18. doi: 10.1002/adma.v26.14

    51. [51]

      Silva B. F. B., Rodríguez-Abreu C., Vilanova N.. Recent advances in multiple emulsions and their application as templates[J]. Curr. Opin. Colloid. Interface. Sci., 2016,25:98-108. doi: 10.1016/j.cocis.2016.07.006

    52. [52]

      Wang S. Y., Shi X. D., Gan Z. H., Wang F.. Preparation of PLGA microspheres with different porous morphologies[J]. Chinese J. Polym. Sci., 2015,33(1):128-136. doi: 10.1007/s10118-014-1507-9

    53. [53]

      Wang W. C., Peng C., Shi K., Pan Y. X., Zhang H. S., Ji X. L.. Double emulsion droplets as microreactors for synthesis of magnetic macroporous polymer beads[J]. Chinese J. Polym. Sci., 2014,32(12):1639-1645. doi: 10.1007/s10118-014-1543-5

    54. [54]

      Wang W. C., Shi K., Pan Y. X., Peng C., Zhao Z. L., Liu W., Liu Y. G., Ji X. L.. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets[J]. Chinese J. Polym. Sci., 2016,34(4):475-482. doi: 10.1007/s10118-016-1769-5

    55. [55]

      Mashaghi S., Abbaspourrad A., Weitz D. A., van Oijen A. M.. Droplet microfluidics:a tool for biology, chemistry and nanotechnology[J]. Trac-trend. Anal. Chem., 2016,82:118-125. doi: 10.1016/j.trac.2016.05.019

    56. [56]

      Eggersdorfer M. L., Zheng W., Nawar S., Mercandetti C., Ofner A., Leibacher I., Koehler S., Weitz D. A.. Tandem emulsification for high-throughput production of double emulsions[J]. Lab Chip, 2017,17(5):936-942. doi: 10.1039/C6LC01553K

    57. [57]

      Wang W., Zhang M. J., Chu L. Y.. Functional polymeric microparticles engineered from controllable microfluidic emulsions[J]. Acc. Chem. Res., 2014,47(2):373-384. doi: 10.1021/ar4001263

    58. [58]

      Ma G. H., Sone H., Omi S.. Preparation of uniform-sized polystyrene-polyacrylamide composite microspheres from a W/O/W emulsion by membrane emulsification technique and subsequent suspension polymerization[J]. Macromolecules, 2004,37(8):2954-2964. doi: 10.1021/ma035316g

    59. [59]

      Clegg P. S., Tavacoli J. W., Wilde P. J.. One-step production of multiple emulsions:microfluidic, polymer-stabilized and particle-stabilized approaches[J]. Soft Matter, 2016,12(4):998-1008. doi: 10.1039/C5SM01663K

    60. [60]

      Ficheux M. F., Bonakdar L., Leal-Calderon F., Bibette J.. Some stability criteria for double emulsions[J]. Langmuir, 1998,14(10):2702-2706. doi: 10.1021/la971271z

    61. [61]

      Morais J. M., Santos O. D. H., Friberg S. E.. Some fundamentals of the one-step formation of double emulsions[J]. J. Disper. Sci. Technol., 2010,31(8):1019-1026. doi: 10.1080/01932690903224656

    62. [62]

      Morais J. M., Santos O. D. H., Nunes J. R. L., Zanatta C. F., Rocha-Filho P. A.. W/O/W multiple emulsions obtained by one-step emulsification method and evaluation of the involved variables[J]. J. Disper. Sci. Technol., 2008,29(1):63-69. doi: 10.1080/01932690701688391

    63. [63]

      Morais J. M., Rocha-Filho P. A., Burgess D. J.. Influence of phase inversion on the formation and stability of one-step multiple emulsions[J]. Langmuir, 2009,25(14):7954-7961. doi: 10.1021/la9007125

    64. [64]

      Binks B. P., Murakami R., Armes S. P., Fujii S.. Temperature-induced inversion of nanoparticle-stabilized emulsions[J]. Angew. Chem. Int. Ed., 2005,44(30):4795-4798. doi: 10.1002/(ISSN)1521-3773

    65. [65]

      Besnard L., Marchal F., Paredes J. F., Daillant J., Pantoustier N., Perrin P., Guenoun P.. Multiple emulsions controlled by stimuli-responsive polymers[J]. Adv. Mater., 2013,25(20):2844-2848. doi: 10.1002/adma.201204496

    66. [66]

      Protat M., Bodin N., Gobeaux F., Malloggi F., Daillant J., Pantoustier N., Guenoun P., Perrin P.. Biocompatible stimuli-responsive W/O/W multiple emulsions prepared by one-step mixing with a single diblock copolymer emulsifier[J]. Langmuir, 2016,32(42):10912-10919. doi: 10.1021/acs.langmuir.6b02590

    67. [67]

      Manova A., Viktorova J., Köhler J., Theiler S., Keul H., Piryazev A. A., Ivanov D. A., Tsarkova L., Möller M.. Multilamellar thermoresponsive emulsions stabilized with biocompatible semicrystalline block copolymers[J]. ACS Macro Lett., 2016,5(2):163-167. doi: 10.1021/acsmacrolett.5b00743

    68. [68]

      Chen Q., Xu Y., Cao X., Qin L., An Z.. Core cross-linked star (CCS) polymers with temperature and salt dual responsiveness:synthesis, formation of high internal phase emulsions (HIPEs) and triggered demulsification[J]. Polym. Chem., 2014,5(1):175-185. doi: 10.1039/C3PY00942D

    69. [69]

      Chen Q., Hill M. R., Brooks W. L. A., Zhu A., Sumerlin B. S., An Z.. Boronic acid linear homopolymers as effective emulsifiers and gelators[J]. ACS Appl. Mater. Interfaces, 2015,7(39):21668-21672. doi: 10.1021/acsami.5b07456

    70. [70]

      Liu F., Lin S. D., Zhang Z. Q., Hu J. W., Liu G. J., Tu Y. Y., Yang Y., Zou H. L., Mo Y. M., Miao L.. pH-Responsive nanoemulsions for controlled drug release[J]. Biomacromolecules, 2014,15(3):968-977. doi: 10.1021/bm4018484

    71. [71]

      Wang D. G., Liao S. L., Zhang S. M., Wang Y. P.. A reversed photosynthesis-like process for light-triggered CO2 capture, release, and conversion[J]. ChemSusChem, 2017,10(12):2573-2577. doi: 10.1002/cssc.v10.12

    72. [72]

      Wang J., Zhao J., Li Y. B., Yang M., Chang Y. Q., Zhang J. P., Sun Z. W., Wang Y. P.. Enhanced light absorption in porous particles for ultra-NIR-sensitive biomaterials[J]. ACS Macro Lett., 2015,4(4):392-397. doi: 10.1021/acsmacrolett.5b00089

    73. [73]

      Cao Y. Y., Wang Z., Liao S. L., Wang J., Wang Y. P.. A light-activated microheater for the remote control of enzymatic catalysis[J]. Chem. Eur. J., 2016,22(3):1152-1158. doi: 10.1002/chem.201503665

    74. [74]

      Qian Q. P., Huang X. P., Zhang X. Y., Xie Z. G., Wang Y. P.. One-step preparation of macroporous polymer particles with multiple interconnected chambers:a candidate for trapping biomacromolecules[J]. Angew. Chem. Int. Ed., 2013,52(40):10625-10629. doi: 10.1002/anie.201305003

    75. [75]

      Huang X. P., Fang R. C., Wang D. G., Wang J., Xu H. P., Wang Y. P., Zhang X.. Tuning polymeric amphiphilicity via Se-N interactions:towards one-step double emulsion for highly selective enzyme mimics[J]. Small, 2015,11(13):1537-1541. doi: 10.1002/smll.v11.13

    76. [76]

      Wang D. G., Huang X. P., Wang Y. P.. Managing the phase separation in double emulsion by tuning amphiphilicity via a supramolecular route[J]. Langmuir, 2014,30(48):14460-14468. doi: 10.1021/la5043525

    77. [77]

      Wang Z., Song J., Zhang S., Xu X. Q., Wang Y. P.. Formulating polyethylene glycol as supramolecular emulsifiers for one-step double emulsions[J]. Langmuir, 2017,33(36):9160-9169. doi: 10.1021/acs.langmuir.7b02326

    78. [78]

      Cameron N. R., Sherrington D. C.. High internal phase emulsions (HIPEs)-structure, properties and use in polymer preparation[J]. Adv. Polym. Sci., 1996,126:163-214. doi: 10.1007/3-540-60484-7

    79. [79]

      Silverstein, M. S.; Cameron, N. R., "PolyHIPEs-porous polymers from high internal phase emulsions. In Encyclopedia of polymer science and technology", John Wiley & Sons, Inc.:2010.

    80. [80]

      Silverstein M. S.. PolyHIPEs:recent advances in emulsiontemplated porous polymers[J]. Prog. Polym. Sci., 2014,39(1):199-234. doi: 10.1016/j.progpolymsci.2013.07.003

    81. [81]

      Williams J. M.. High internal phase water-in-oil emulsionsinfluence of surfactants and cosurfactants on emulsion stability and foam quality[J]. Langmuir, 1991,7(7):1370-1377. doi: 10.1021/la00055a014

    82. [82]

      Barbetta A., Cameron N. R.. Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents:span 80 as surfactant[J]. Macromolecules, 2004,37(9):3188-3201. doi: 10.1021/ma0359436

    83. [83]

      Haibach K., Menner A., Powell R., Bismarck A.. Tailoring mechanical properties of highly porous polymer foams:silica particle reinforced polymer foams via emulsion templating[J]. Polymer, 2006,47(13):4513-4519. doi: 10.1016/j.polymer.2006.03.114

    84. [84]

      Kovacic S., Preishuber-Pfluegl F., Pahovnik D., Zagar E., Slugovc C.. Covalent incorporation of the surfactant into high internal phase emulsion templated polymeric foams[J]. Chem. Commun., 2015,51(36):7725-7728. doi: 10.1039/C4CC09199J

    85. [85]

      Binks B. P., Lumsdon S. O.. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J]. Langmuir, 2000,16(6):2539-2547. doi: 10.1021/la991081j

    86. [86]

      Kralchevsky P. A., Ivanov I. B., Ananthapadmanabhan K. P., Lips A.. On the thermodynamics of particle-stabilized emulsions:curvature effects and catastrophic phase inversion[J]. Langmuir, 2005,21(1):50-63. doi: 10.1021/la047793d

    87. [87]

      Colver P. J., Bon S. A. F.. Cellular polymer monoliths made via Pickering high internal phase emulsions[J]. Chem. Mater., 2007,19(7):1537-1539. doi: 10.1021/cm0628810

    88. [88]

      Ikem V. O., Menner A., Bismarck A.. High internal phase emulsions stabilized solely by functionalized silica particles[J]. Angew. Chem. Int. Ed., 2008,47(43):8277-8279. doi: 10.1002/anie.v47:43

    89. [89]

      Li Z., Ming T., Wang J., Ngai T.. High internal phase emulsions stabilized solely by microgel particles[J]. Angew. Chem. Int. Ed., 2009,48(45):8490-8493. doi: 10.1002/anie.v48:45

    90. [90]

      Sun G., Li Z., Ngai T.. Inversion of particle-stabilized emulsions to form high-internal-phase emulsions[J]. Angew. Chem. Int. Ed., 2010,49(12):2163-2166. doi: 10.1002/anie.v49:12

    91. [91]

      Ikem V. O., Menner A., Horozov T. S., Bismarck A.. Highly permeable macroporous polymers synthesized from Pickering medium and high internal phase emulsion templates[J]. Adv. Mater., 2010,22(32):3588-3592. doi: 10.1002/adma.201000729

    92. [92]

      Yi W., Wu H., Wang H., Du Q.. Interconnectivity of macroporous hydrogels prepared via graphene oxide-stabilized Pickering high internal phase emulsions[J]. Langmuir, 2016,32(4):982-990. doi: 10.1021/acs.langmuir.5b04477

    93. [93]

      Ye Y., Jin M., Wan D.. One-pot synthesis of porous monolith-supported gold nanoparticles as an effective recyclable catalyst[J]. J. Mater. Chem. A, 2015,3(25):13519-13525. doi: 10.1039/C5TA02925B

    94. [94]

      Xu H., Zheng X., Huang Y., Wang H., Du Q.. Interconnected porous polymers with tunable pore throat size prepared via Pickering high internal phase emulsions[J]. Langmuir, 2016,32(1):38-45. doi: 10.1021/acs.langmuir.5b03037

    95. [95]

      Perrin E., Bizot H., Cathala B., Capron I.. Chitin nanocrystals for Pickering high internal phase emulsions[J]. Biomacromolecules, 2014,15(10):3766-3771. doi: 10.1021/bm5010417

    96. [96]

      Li J., Zhang J., Zhao Y., Han B., Yang G.. High-internal-ionic liquid-phase emulsions[J]. Chem. Commun., 2012,48(7):994-996. doi: 10.1039/C2CC15922H

    97. [97]

      Cameron N. R., Sherrington D. C.. Synthesis and characterization of poly(aryl ether sulfone) polyHIPE materials[J]. Macromolecules, 1997,30(19):5860-5869. doi: 10.1021/ma961403f

    98. [98]

      Menner A., Powell R., Bismarck A.. A new route to carbon black filled polyHIPEs[J]. Soft Matter, 2006,2(4):337-342. doi: 10.1039/b517731f

    99. [99]

      Viswanathan P., Chirasatitsin S., Ngamkham K., Engler A. J., Battaglia G.. Cell instructive microporous scaffolds through interface engineering[J]. J. Am. Chem. Soc., 2012,134(49):20103-20109. doi: 10.1021/ja308523f

    100. [100]

      Kovacic S., Matsko N. B., Jerabek K., Krajnc P., Slugovc C.. On the mechanical properties of hipe templated macroporous poly(dicyclopentadiene) prepared with low surfactant amounts[J]. J. Mater. Chem. A, 2013,1(3):487-490. doi: 10.1039/C2TA00546H

    101. [101]

      Viswanathan P., Johnson D. W., Hurley C., Cameron N. R., Battaglia G.. 3D surface functionalization of emulsiontemplated polymeric foams[J]. Macromolecules, 2014,47(20):7091-7098. doi: 10.1021/ma500968q

    102. [102]

      Xing Y., Peng J., Xu K., Gao S., Gui X., Liang S., Sun L., Chen M.. A soluble star-shaped silsesquioxane-cored polymer-towards novel stabilization of pH-dependent high internal phase emulsions[J]. Phys. Chem. Chem. Phys., 2017,19(34):23024-23033. doi: 10.1039/C7CP03325G

    103. [103]

      Oh B. H. L., Bismarck A., Chan-Park M. B.. High internal phase emulsion templating with self-emulsifying and thermoresponsive chitosan-graft-PNIPAM-graft-oligoproline[J]. Biomacromolecules, 2014,15(5):1777-1787. doi: 10.1021/bm500172u

    104. [104]

      Chen Q. J., An Z. S.. Synthesis of star polymeric ionic liquids and use as the stabilizers for high internal phase emulsions[J]. Chinese J. Polym. Sci., 2017,35(1):54-65. doi: 10.1007/s10118-016-1858-5

    105. [105]

      Zhang S., Wang D., Pan Q., Gui Q., Liao S., Wang Y.. Light-triggered CO2 breathing foam via nonsurfactant high internal phase emulsion[J]. ACS Appl. Mater. Interfaces, 2017,9:34497-34505. doi: 10.1021/acsami.7b11315

    106. [106]

      Huang X. P., Yang Y. D., Shi J. Z., Ngo H. T., Shen C. H., Du W. B., Wang Y. P.. High-internal-phase emulsion tailoring polymer amphiphilicity towards an efficient NIR-sensitive bacteria filter[J]. Small, 2015,11(37):4876-4883. doi: 10.1002/smll.v11.37

    107. [107]

      Chen Y. W., Wang Z., Wang D. G., Ma N., Li C. C., Wang Y. P.. Surfactant-free emulsions with erasable triggered phase inversions[J]. Langmuir, 2016,32(42):11039-11042. doi: 10.1021/acs.langmuir.6b03189

  • 加载中
    1. [1]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    2. [2]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    3. [3]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    4. [4]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    5. [5]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    6. [6]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    7. [7]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    8. [8]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    9. [9]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    10. [10]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    11. [11]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    12. [12]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    13. [13]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    14. [14]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    15. [15]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    18. [18]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    19. [19]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    20. [20]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

Metrics
  • PDF Downloads(0)
  • Abstract views(934)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return