Citation: Bo Cheng, Shu-Xun Cui. The Important Roles of Water in Protein Folding: an Approach by Single Molecule Force Spectroscopy[J]. Chinese Journal of Polymer Science, ;2018, 36(3): 379-384. doi: 10.1007/s10118-018-2082-2 shu

The Important Roles of Water in Protein Folding: an Approach by Single Molecule Force Spectroscopy

  • Corresponding author: Shu-Xun Cui, cuishuxun@swjtu.edu.cn
  • Received Date: 23 September 2017
    Accepted Date: 2 November 2017
    Available Online: 7 December 2017

  • The single-chain elasticity of a completely unfolded protein ((I27)8, modules of human cardiac titin) is studied in different liquid environments by the atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS). The experimental results show that there is a clear deviation between the force curves obtained in the aqueous and nonaqueous environments. Such a deviation can be attributed to the additional energy consumed by the rearrangement of the bound water molecules around the chain of the completely unfolded (I27)8 chain upon stretching in aqueous solution, which is very similar to the partial dehydration process from a denatured/unfolded to a native/folded protein. Through the analysis of the free energy changes involved in protein folding, we conclude that it is due to the weak disturbance of water molecules and the special backbone structures of proteins that the self-assembly of proteins can be achieved in physiological conditions. We speculate that water is likely to be an important criterion for the selection of self-assembling macromolecules in the prebiotic chemical evolution.
  • 加载中
    1. [1]

      Ball P.. Water as an active constituent in cell biology[J]. Chem. Rev., 2008,108(1):74-108. doi: 10.1021/cr068037a

    2. [2]

      Cui S.. The possible roles of water in the prebiotic chemical evolution of DNA[J]. Phys. Chem. Chem. Phys., 2010,12(35):10147-10153.  

    3. [3]

      Levy Y., Onuchic J. N.. Water mediation in protein folding and molecular recognition[J]. Annu. Rev. Biophys. Biomol. Struct., 2006,35:389-415. doi: 10.1146/annurev.biophys.35.040405.102134

    4. [4]

      Papoian G. A., Ulander J., Eastwood M. P., Luthey-Schulten Z., Wolynes P. G.. Water in protein structure prediction[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101(10):3352-3357. doi: 10.1073/pnas.0307851100

    5. [5]

      Scatena L. F., Brown M. G., Richmond G. L.. Water at hydrophobic surfaces:weak hydrogen bonding and strong orientation effects[J]. Science, 2001,292(5518):908-912. doi: 10.1126/science.1059514

    6. [6]

      Cui S., Yu J., Kuehner F., Schulten K., Gaub H. E.. Double-stranded DNA dissociates into single strands when dragged into a poor solvent[J]. J. Am. Chem. Soc., 2007,129(47):14710-14716. doi: 10.1021/ja074776c

    7. [7]

      Knubovets T., Osterhout J. J., Klibanov A. M.. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies[J]. Biotechnol. Bioeng., 1999,63(2):242-248. doi: 10.1002/(ISSN)1097-0290

    8. [8]

      Houen G., Svaerke C., Barkholt V.. The solubilities of denatured proteins in different organic solvents[J]. Acta Chem. Scand., 1999,53(12):1122-1126.  

    9. [9]

      Hugel T., Seitz M.. The study of molecular interactions by AFM force spectroscopy[J]. Macromol. Rapid Commun., 2001,22(13):989-1016. doi: 10.1002/(ISSN)1521-3927

    10. [10]

      Janshoff A., Neitzert M., Oberdorfer Y., Fuchs H.. Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules[J]. Angew. Chem. Int. Ed., 2000,39(18):3212-3237. doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Pang X., Cheng B., Cui S.. The solvent quality of water for poly(N-isopropylacrylamide) in the collapsed state:implications from single-molecule studies[J]. Chinese J. Polym. Sci., 2016,34(5):578-584. doi: 10.1007/s10118-016-1773-9

    12. [12]

      Cheng B., Wu S., Liu S., Rodriguez-Aliaga P., Yu J., Cui S.. Protein denaturation at a single-molecule level:the effect of nonpolar environments and its implications on the unfolding mechanism by proteases[J]. Nanoscale, 2015,7(7):2970-2977. doi: 10.1039/C4NR07140A

    13. [13]

      Improta S., Politou A. S., Pastore A.. Immunoglobulin-like modules from titin I-band:extensible components of muscle elasticity[J]. Structure, 1996,4(3):323-337. doi: 10.1016/S0969-2126(96)00036-6

    14. [14]

      Lu H., Schulten K.. The key event in force-induced unfolding of titin's immunoglobulin domains[J]. Biophys. J., 2000,79(1):51-65. doi: 10.1016/S0006-3495(00)76273-4

    15. [15]

      Li H., Oberhauser A. F., Fowler S. B., Clarke J., Fernandez J. M.. Atomic force microscopy reveals the mechanical design of a modular protein[J]. Proc. Natl. Acad. Sci. U. S. A., 2000,97(12):6527-6531. doi: 10.1073/pnas.120048697

    16. [16]

      Carrion-Vazquez M., Oberhauser A. F., Fowler S. B., Marszalek P. E., Broedel S. E., Clarke J., Fernandez J. M.. Mechanical and chemical unfolding of a single protein:a comparison[J]. Proc. Natl. Acad. Sci. U. S. A., 1999,96(7):3694-3699. doi: 10.1073/pnas.96.7.3694

    17. [17]

      Marszalek P. E., Lu H., Li H. B., Carrion-Vazquez M., Oberhauser A. F., Schulten K., Fernandez J. M.. Mechanical unfolding intermediates in titin modules[J]. Nature, 1999,402(6757):100-103. doi: 10.1038/47083

    18. [18]

      Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E.. Reversible unfolding of individual titin immunoglobulin domains by AFM[J]. Science, 1997,276(5315):1109-1112. doi: 10.1126/science.276.5315.1109

    19. [19]

      Florin E. L., Rief M., Lehmann H., Ludwig M., Dornmair C., Moy V. T., Gaub H. E.. Sensing specific molecular-interactions with the atomic-force microscope[J]. Biosens. Bioelectron., 1995,10(9-10):895-901. doi: 10.1016/0956-5663(95)99227-C

    20. [20]

      Zhang W., Zhang X.. Single molecule mechanochemistry of macromolecules[J]. Prog. Polym. Sci., 2003,28(8):1271-1295. doi: 10.1016/S0079-6700(03)00046-7

    21. [21]

      Wan Z., Li L., Cui S.. Capturing the portrait of isolated individual natural cellulose molecules[J]. Biopolymers, 2008,89:1170-1173. doi: 10.1002/bip.21070

    22. [22]

      Cui S., Pang X., Zhang S., Yu Y., Ma H., Zhang X.. Unexpected temperature-dependent single chain mechanics of poly(N-isopropyl-acrylamide) in water[J]. Langmuir, 2012,28(11):5151-5157. doi: 10.1021/la300135w

    23. [23]

      Cui S. X., Albrecht C., Kuhner F., Gaub H. E.. Weakly bound water molecules shorten single-stranded DNA[J]. J. Am. Chem. Soc., 2006,128(20):6636-6639. doi: 10.1021/ja0582298

    24. [24]

      Cheung M. S., Garcia A. E., Onuchic J. N.. Protein folding mediated by solvation:water expulsion and formation of the hydrophobic core occur after the structural collapse[J]. Proc. Natl. Acad. Sci. U. S. A., 2002,99(2):685-690. doi: 10.1073/pnas.022387699

    25. [25]

      Head-Gordon T., Brown S.. Minimalist models for protein folding and design[J]. Curr. Opin. Struc. Biol., 2003,13(2):160-167. doi: 10.1016/S0959-440X(03)00030-7

    26. [26]

      Kellermayer M. S. Z., Smith S. B., Granzier H. L., Bustamante C.. Folding-unfolding transitions in single titin molecules characterized with laser tweezers[J]. Science, 1997,276(5315):1112-1116. doi: 10.1126/science.276.5315.1112

    27. [27]

      Luo Z., Zhang A., Chen Y., Shen Z., Cui S.. How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule[J]. Macromolecules, 2016,49(9):3559-3565. doi: 10.1021/acs.macromol.6b00247

    28. [28]

      Lum K., Chandler D., Weeks J. D.. Hydrophobicity at small and large length scales[J]. J. Phys. Chem. B, 1999,103(22):4570-4577. doi: 10.1021/jp984327m

    29. [29]

      Tanford C.. Protein denaturation[J]. Part C. Theoretical models for the mechanism of denaturation. Adv. Prot. Chem., 1970,24:1-95.  

    30. [30]

      Kharakoz D. P.. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution:additivity scheme and implication of protein unfolding at normal and high pressure[J]. Biochemistry, 1997,36(33):10276-10285. doi: 10.1021/bi961781c

    31. [31]

      Kumar A., Venkatesu P.. Overview of the stability of α-chymotrypsin in different solvent media[J]. Chem. Rev., 2012,112(7):4283-4307. doi: 10.1021/cr2003773

    32. [32]

      Larsericsdotter H., Oscarsson S., Buijs J.. Thermodynamic analysis of lysozyme adsorbed to silica[J]. J. Colloid Interface Sci., 2004,276(2):261-268. doi: 10.1016/j.jcis.2004.03.056

    33. [33]

      Dietz H., Rief M.. Exploring the energy landscape of GFP by single-molecule mechanical experiments[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101(46):16192-16197. doi: 10.1073/pnas.0404549101

    34. [34]

      Alexander P., Fahnestock S., Lee T., Orban J., Bryan P.. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2:why small proteins tend to have high denaturation temperatures[J]. Biochemistry, 1992,31(14):3597-3603. doi: 10.1021/bi00129a007

    35. [35]

      Liu C., Cui S., Wang Z., Zhang X.. Single-chain mechanical property of poly(N-vinyl-2-pyrrolidone) and interaction with small molecules[J]. J. Phys. Chem. B, 2005,109(31):14807-14812. doi: 10.1021/jp050227m

    36. [36]

      Oesterhelt F., Rief M., Gaub H. E.. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water[J]. New J. Phys., 1999,1:6.1-6.11.  

    37. [37]

      Cui S.. Single-molecule force spectroscopy of biomacromolecules:comparative studies in aqueous solution and nonpolar solvents[J]. Acta Polymerica Sinica (in Chinese), 2016(9):1160-1165.  

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    5. [5]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    6. [6]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    7. [7]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    10. [10]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    11. [11]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    12. [12]

      Bo LiuShuaiqiang ShaoJunjie CaiZijian ZhangFeng TianKun YangFan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814

    13. [13]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    14. [14]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    15. [15]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    16. [16]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    17. [17]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    18. [18]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    19. [19]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    20. [20]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

Metrics
  • PDF Downloads(0)
  • Abstract views(748)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return