Citation: Bing-yong Liu, Xiao-chun Yang, Cong-wu Ge, Jian-min Dou, Da-cheng Li, Xi-ke Gao. 1, 2, 5, 6-Naphthalenediimide-based Conjugated Copolymers Linked by Ethynyl Units[J]. Chinese Journal of Polymer Science, ;2017, 35(11): 1342-1351. doi: 10.1007/s10118-017-1988-4 shu

1, 2, 5, 6-Naphthalenediimide-based Conjugated Copolymers Linked by Ethynyl Units

  • Corresponding author: Jian-min Dou, jmdou@lcu.edu.cn Da-cheng Li, lidacheng62@lcu.edu.cn Xi-ke Gao, gaoxk@sioc.ac.cn
  • Received Date: 17 April 2017
    Revised Date: 24 May 2017
    Accepted Date: 1 June 2017

    Fund Project: the National Natural Science Foundation of China 21674126the "Strategic Priority Research Program" XDB12010100the Shanghai Science and Technology Committee 16JC1400603

  • Two copolymers of P1 and P2 comprising benzothiadiazole, 1, 4-bis(dodecyloxy)-benzene units were synthesized by Sonogashira coupling polymerization based on ethynyl-linked 1, 2, 5, 6-naphthalenediimide. Their thermal, optical, electrochemical as well as charge transport properties were studied. Bottom-gate top-contact organic field-effect transistors (OFETs) measurements of P1 and P2 thin films showed different charge transport behaviors. P1 displayed pure electron transport behaviors in OFETs with electron mobility up to 10-3 cm2·V-1·s-1, while P2 exhibited hole transport features. The molecular structure analysis revealed that the structure of P1 has the acceptor-linker-acceptor' (A-L-A') characteristic, and P2 possesses the donor-linker-acceptor (D-L-A) structure feature. The results demonstrate that different molecular structures lead them to have distinct charge transport behaviors. In particular, the first pure electron transport copolymer in OFETs based on 1, 2, 5, 6-naphthalenediimide is achieved.
  • 加载中
    1. [1]

      Jung, B.J., Tremblay, N.J., Yeh, M.L. and Katz, H.E., Chem. Mater., 2011, 23:568  doi: 10.1021/cm102296d

    2. [2]

      Anthony, J.E., Facchetti, A., Heeney, M., Marder, S.R. and Zhan, X., Adv. Mater., 2011, 22:3876

    3. [3]

      Zhan, X., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R. and Marder S.R., Adv. Mater., 2011, 23:268  doi: 10.1002/adma.v23.2

    4. [4]

      Huang, C., Barlow, S. and Marder, S.R., J. Org. Chem., 2011, 76:2386  doi: 10.1021/jo2001963

    5. [5]

      Wang, C.L., Hu, W.P., Liu, Y.Q. and Zhu, D.B., Chem. Rev., 2012, 112:2208  doi: 10.1021/cr100380z

    6. [6]

      Katz, H.E., Lovinger, A.J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y. and Dodabalapur, A., Nature, 2000, 404:478  doi: 10.1038/35006603

    7. [7]

      Gao, X., Di, C., Hu, Y., Yang, X., Fan, H., Zhang, F., Liu, Y., Li, H. and Zhu, D., J. Am. Chem. Soc., 2010, 132:3697  doi: 10.1021/ja910667y

    8. [8]

      Piliego, C., Jarzab, D., Gigli, G., Chen, Z., Facchetti, A. and Loi, M.A., Adv. Mater., 2009, 21:1573  doi: 10.1002/adma.v21:16

    9. [9]

      Ortiz, R.P., Herrera, H., Blanco, R., Huang, H., Facchetti, A., Marks, T.J., Zheng, Y. and Segura, J.L., J. Am. Chem. Soc., 2010, 132:8440  doi: 10.1021/ja1018783

    10. [10]

      Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dotz, F., Kastler, M. and Facchetti, A., Nature, 2009, 457:679  doi: 10.1038/nature07727

    11. [11]

      Chopin, S., Chaignon, F., Blart, E. and Odobel, F., J. Mater. Chem., 2007, 17:4139  doi: 10.1039/b704489e

    12. [12]

      Chaignon, F., Falkenstrom, M., Karlsson, S., Blart, E., Odobel, F. and Hammarstrom, L., Chem. Commun., 2007, 42:64

    13. [13]

      Thalacker, C., Röger, C. and Würthner, F., J. Org. Chem., 2006, 71:8098  doi: 10.1021/jo0612269

    14. [14]

      Zhan, X., Tan, Z., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y., Zhu, D., Kippelen, B. and Marder, S.R., J. Am. Chem. Soc., 2007, 129:7246  doi: 10.1021/ja071760d

    15. [15]

      Chen, Z., Zheng, Y., Yan, H. and Facchetti, A., J. Am. Chem. Soc., 2009, 131:8  doi: 10.1021/ja805407g

    16. [16]

      Durban, M.M., Kazarinoff, P.D. and Luscombe, C.K., Macromolecules, 2010, 43:6348  doi: 10.1021/ma100997g

    17. [17]

      Kudla, C.J., Dolfen, D., Schottler, K.J., Koenen, J.M., Breusov, D., Allard S. and Scherf, U., Macromolecules, 2010, 43:7864  doi: 10.1021/ma1014885

    18. [18]

      Zhou, E., Cong, J., Wei, Q., Tajima, K., Yang, C. and Hashimoto, K., Angew. Chem. Int. Ed., 2010, 50:2799

    19. [19]

      Monika, M.S., Eliot, H.G., Christopher, R.M., Vincent, L., Yoann, O., Lars, T., Yana, V., Michael, S. and Henning, S., Chem. Mater., 2014, 26:6796  doi: 10.1021/cm5033578

    20. [20]

      Takimiya, K. and Nakano, I.O.M., Chem. Mater., 2014, 26:587  doi: 10.1021/cm4021063

    21. [21]

      Dou, C., Long, X., Ding, Z., Xie, Z., Liu, J. and Wang, L., Angew. Chem. Int. Ed., 2016, 55:1436  doi: 10.1002/anie.201508482

    22. [22]

      Long, X., Ding, Z., Dou, C., Zhang, J., Liu, J. and Wang, L., Adv. Mater., 2016, 28:6504  doi: 10.1002/adma.201601205

    23. [23]

      Ding, Z., Long, X., Dou, C., Liu, J. and Wang, L., Chem. Sci., 2016, 7:6197  doi: 10.1039/C6SC01756H

    24. [24]

      Jung, J.W., Jo, J.W., Chueh, C.C., Liu, F., Jo, W.H., Russell, T.P. and Jen, A.K.Y., Adv. Mater., 2015, 27:3310  doi: 10.1002/adma.v27.21

    25. [25]

      Hwang, Y.J., Courtright, B.A., Ferreira, A.S., Tolbert, S.H. and Jenekhe, S.A., Adv. Mater., 2015, 27:4578  doi: 10.1002/adma.v27.31

    26. [26]

      Gao, L., Zhang, Z.G., Xue, L., Min. J., Zhang, J., Wei, Z. and Li, Y., Adv. Mater., 2016, 28:1884  doi: 10.1002/adma.201504629

    27. [27]

      Shi, S., Yuan, J., Ding, G., Ford, M., Lu, K., Shi, G., Sun, J., Ling, X., Li, Y. and Ma, W., Adv. Funct. Mater., 2016, 26:5669  doi: 10.1002/adfm.v26.31

    28. [28]

      Zhou, E., Cong, J., Hashimoto, K. and Tajima, K., Adv. Mater., 2013, 25:6991  doi: 10.1002/adma.v25.48

    29. [29]

      Hwang, T.J., Ren, G., Murari, N.M. and Jenekhe, S.A., Macromolecules, 2012, 45:9056  doi: 10.1021/ma3020239

    30. [30]

      Mu, C., Liu, P., Ma, W., Jiang, K., Zhao, J., Zhang, K., Chen, Z., Wei, Z., Yi, Y., Wang, J., Yang, S., Huang, F., Facchetti, A., Ade, H. and Yan, H., Adv. Mater., 2014, 26:7224  doi: 10.1002/adma.v26.42

    31. [31]

      Kim, T., Kim, J.H., Kang, T.E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T.S. and Kim, B.J., Nat. Commun., 2015, 6:8547  doi: 10.1038/ncomms9547

    32. [32]

      Li, Z., Xu, X., Zhang, W., Meng, X., Ma, W., Yartsev, A., Inganas, O., Andersson, M.R., Janssen, R.A. and Wang, E., J. Am. Chem. Soc., 2016, 138:10935  doi: 10.1021/jacs.6b04822

    33. [33]

      Chen, S.C., Zhang, Q.K., Zheng, Q.D., Tang, C.Q. and Lu, C.Z., Chem. Commun., 2012, 48:1254  doi: 10.1039/C2CC15733K

    34. [34]

      Zhao, Z., Zhang, F.J., Zhang, X., Yang, X.D., Li, H.X., Gao, X.K., Di, C.A. and Zhu, D.B., Macromolecules, 2013, 46:7705  doi: 10.1021/ma4013994

    35. [35]

      Zhao, Z., Wang, Z.L., Ge, C.W., Zhang, X., Yang, X.D. and Gao, X.K., Polym. Chem., 2016, 7:573  doi: 10.1039/C5PY01709B

    36. [36]

      Li, Z.J., Feng, K., Liu, J., Mei, J., Li, Y. and Peng, Q., J. Mater. Chem. A, 2016, 4:7372  doi: 10.1039/C6TA01766E

    37. [37]

      Chen, S.C., Zheng, Q.D., Zhang, Q.K., Cai, D.D., Wang, J.Y. and Tang, C.Q., J. Polym. Sci., Part A:Polym. Chem., 2013, 51:1999  doi: 10.1002/pola.26580

    38. [38]

      Zhang, S., Liu, J., Han, Y.C. and Wang, L.X., Macromol. Chem. Phys., 2017, DOI:10.1002/macp. 201600606  doi: 10.1002/macp.201600606

    39. [39]

      Bunz, U.H.F., Chem. Rev., 2000, 100:1605  doi: 10.1021/cr990257j

    40. [40]

      Bunz, U.H.F., Acc. Chem. Res., 2001, 34:998  doi: 10.1021/ar010092c

    41. [41]

      Thomas, S.W., Joly, G.D. and Swager, T.M., Chem. Rev., 2007, 107:1339  doi: 10.1021/cr0501339

    42. [42]

      VanVeller, B., Miki, K. and Swager, T.M., Org. Lett., 2010, 12:1292  doi: 10.1021/ol1001768

    43. [43]

      Esser, B. and Swager, T.M., Angew. Chem. Int. Ed., 2010, 49:8872  doi: 10.1002/anie.v49.47

    44. [44]

      Bajaj, A., Miranda, O.R., Phillips, R., Kim, I.B., Jerry, D.J., Bunz, U.H.F. and Rotello, V.M., J. Am. Chem. Soc., 2009, 132:1018

    45. [45]

      Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, L., Allara, D.L., Tour, J.M. and Weiss, P.S., Science, 1996, 271:1705  doi: 10.1126/science.271.5256.1705

    46. [46]

      Samori, P., Francke, V., Müllen, K. and Rabe, J.P., Chem. Eur. J., 1999, 5:2312  doi: 10.1002/(SICI)1521-3765(19990802)5:8<>1.0.CO;2-B

    47. [47]

      Samori, P., Sikharulidze, I., Francke, V., Muüllen, K. and Rabe, J.P., Nanotechnology, 1999, 10:77  doi: 10.1088/0957-4484/10/1/015

    48. [48]

      Lu, S.L., Yang, M.J., Luo, J., Cao, Y. and Bai, F.L., Synthetic Met., 2004, 146:175  doi: 10.1016/j.synthmet.2004.06.015

    49. [49]

      Chu, Q.H. and Pang, Y., Macromolecules, 2003, 36:3848  doi: 10.1021/ma034028h

    50. [50]

      Intemann, J.J., Emily, S., Tlach, E.S., Ewan, B.C., Barnes, M.D., Bhuwalka, C.A., Cai, A., Shinar, M., Shinar, J.R. and Jeffries, E.L., Macromolecules, 2012, 45:6888  doi: 10.1021/ma300821m

    51. [51]

      Woody, K.B., Henry, E.M., Jagtap, S. and Collard, D.M., Macromolecules, 2011, 44:9118  doi: 10.1021/ma201347z

    52. [52]

      Popere, B.C., Pelle, A.M.D. and Thayumanavan, S., Macromolecules, 2011, 44:4767  doi: 10.1021/ma200839q

    53. [53]

      Kola, S., Kim, J.H., Ireland, R., Yeh, M.L., Smith, K., Guo, W.M. and Katz, H.E., ACS Macro Lett., 2013, 2:664  doi: 10.1021/mz400164s

    54. [54]

      Dong, H.L., Wang, E.J., Yan, S.K., Zhang, J.M., Yang, C.M., Hiroshi, N., Keiichi, T. and Hu, W.P., J. Phys. Chem. B, 2009, 113:4176  doi: 10.1021/jp811374h

    55. [55]

      Kokil, A., Shiyanovskaya, I., Singer, K.D. and Weder, C., Synthetic Met., 2003, 138:513  doi: 10.1016/S0379-6779(02)01241-9

    56. [56]

      Hou, Y.H., Yin, S.G., Chen, Y.S., Yua, A., Liu, Q., Yang, M. and Wan, X.J., Macromolecules, 2008, 41:3114  doi: 10.1021/ma702864c

    57. [57]

      Du, C., Li, W., Li, C. and Bo, Z., J. Polym. Sci., Part A:Polym. Chem., 2013, 51:383  doi: 10.1002/pola.26396

    58. [58]

      Kim, B.S., Ma, B.W., Donuru, V.R., Liu, H.Y. and Fréchet, J.M.J., Chem. Commun., 2010, 46:4148  doi: 10.1039/b927350f

    59. [59]

      Voskerician, G. and Weder, C., Adv. Polym. Sci., 2005, 177:209  doi: 10.1007/b101353

    60. [60]

      Debnath, S., Singh, S., Bedi, A., Krishnamoorthy, K. and Zade, S.S., J. Polym. Sci., Part A:Polym. Chem., 2016, 54:1978  doi: 10.1002/pola.v54.13

    61. [61]

      Anna, L.P., Yoosaf, K., Traboulsi, H., Mohanraj, J., Seldrum, T., Dumont, J., Minoia, A., Lazzaroni, R., Armaroli, N. and Bonifazi, D., J. Am. Chem. Soc., 2011, 133:15412  doi: 10.1021/ja2011516

    62. [62]

      Hu, Y.B., Qin, Y.K., Gao, X.K., Zhang, F.J., Di, C.A., Zhao, Z., Li, H.X. and Zhu, D.B., Org. Lett., 2012, 14:292  doi: 10.1021/ol203059r

    63. [63]

      Peng, X.J., Song, F.L., Lu, E.H., Wang, Y.N., Zhou, W., Fan, J.L. and Gao, Y.L., J. Am. Chem. Soc., 2005, 127:4170  doi: 10.1021/ja043413z

    64. [64]

      Benniston, A.C., Harriman, A., Lawrie, D. J. and Mayeux, A., Phys. Chem. Chem. Phys., 2004, 6:51  doi: 10.1039/B312286G

    65. [65]

      Kaneda, K. and Arai, T., Photochem. Photobiol. Sci., 2003, 2:402  doi: 10.1039/B211834N

    66. [66]

      Jenekhe, S.A. and Osaheni, J.A., Science, 1994, 265:765  doi: 10.1126/science.265.5173.765

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    3. [3]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    4. [4]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    5. [5]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    6. [6]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    7. [7]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    10. [10]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    11. [11]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    12. [12]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    13. [13]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    14. [14]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    15. [15]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    18. [18]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    19. [19]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    20. [20]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

Metrics
  • PDF Downloads(0)
  • Abstract views(789)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return