Citation: Lin Zhang, Wei Ma. Morphology Optimization in Ternary Organic Solar Cells[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 184-197. doi: 10.1007/s10118-017-1898-5 shu

Morphology Optimization in Ternary Organic Solar Cells

  • Corresponding author: Wei Ma, msewma@xjtu.edu.cn
  • Received Date: 23 October 2016
    Revised Date: 9 November 2016
    Accepted Date: 10 November 2016

    Fund Project: Ministry of Science and Technology 2016YFA0200700the National Natural Science Foundation of China 21504066the National Natural Science Foundation of China 21534003

  • Ternary organic solar cells have drawn great attention because the highest power conversion efficiencies have reached~12%, showing a promising prospect for the future applications. However, most reported ternary solar cells focus on the increase of light absorption and the optimization of energy alignment, but ignore the importance of morphology. Herein, we summarize the morphology optimization on the ternary blends with different structural aspects, such as controlling crystallinity, crystal orientation, domain size, and domain purity. Furthermore, the fundamental mechanism of ternary solar cells which is related to the morphology has been described. The efforts here will provide a guiding role for the morphology optimization on the ternary solar cells in the future.
  • 加载中
    1. [1]

      Prince, M.B., J. Appl. Phys., 1955, 26:534  doi: 10.1063/1.1722034

    2. [2]

      Chapin, D.M., Fuller, C.S. and Pearson, G.L., J. Appl. Phys., 1954, 25:676  doi: 10.1063/1.1721711

    3. [3]

      Chung, B.C., Virshup, G.F., Hikido, S. and Kaminar, N.R., Appl. Phys. Lett., 1989, 55:1741  doi: 10.1063/1.102204

    4. [4]

      Yan, Q.X., Gu, Z.W., Li, Q., Fu, W.F., Chen, X.Q., Liu, W.Q., Pan, H.B., Wang, M. and Chen, H.Z., Chinese J. Polym. Sci., 2014, 32:395  doi: 10.1007/s10118-014-1415-z

    5. [5]

      van Bavel, S.S., Sourty, E., de With, G. and Liis, J., Chinese J. Polym. Sci., 2009, 27:85  doi: 10.1142/S0256767909003686

    6. [6]

      Hoppe, H. and Sariciftci, N.S., J. Mater. Chem., 2006, 16:45  doi: 10.1039/B510618B

    7. [7]

      Dennler, G., Scharber, M.C. and Brabec, C.J., Adv. Mater., 2009, 21:1323  doi: 10.1002/adma.v21:13

    8. [8]

      Günes, S., Neugebauer, H. and Sariciftci, N.S., Chem. Rev., 2007, 107:1324  doi: 10.1021/cr050149z

    9. [9]

      Liu, Z., Xu, J., Chen, D. and Shen, G., Chem. Soc. Rev., 2015, 44:161  doi: 10.1039/C4CS00116H

    10. [10]

      Keshtov, M.L., Marochkin, D.V., Fu, Y.Y., Xie, Z.Y., Geng, Y.H., Kochurov, V.S. and Khokhlov, A.R., Chinese J. Polym. Sci., 2014, 32:844  doi: 10.1007/s10118-014-1458-1

    11. [11]

      Qu, J.F., Liu, J., Li, S.D., Xie, Z.Y. and Geng, Y.H., Chinese J. Polym. Sci., 2013, 31:815  doi: 10.1007/s10118-013-1276-x

    12. [12]

      Lin, Y. and Zhan, X., Acc. Chem. Res., 2016, 49:175  doi: 10.1021/acs.accounts.5b00363

    13. [13]

      Cheng, P., Yan, C., Lau, T.K., Mai, J., Lu, X. and Zhan, X., Adv. Mater., 2016, 28:5822  doi: 10.1002/adma.201600426

    14. [14]

      Lin, Y., Li, Y. and Zhan, X., Chem. Soc. Rev., 2012, 41:4245  doi: 10.1039/c2cs15313k

    15. [15]

      Cheng, P. and Zhan, X., Chem. Soc. Rev., 2016, 45:2544  doi: 10.1039/C5CS00593K

    16. [16]

      Cheng, P., Ye, L., Zhao, X., Hou, J., Li, Y. and Zhan, X., Energy Environ. Sci., 2014, 7:1351  doi: 10.1039/C3EE43041C

    17. [17]

      Cheng, P. and Zhan, X., Mater. Horiz., 2015, 2:462  doi: 10.1039/C5MH00090D

    18. [18]

      Hu, X., Chen, L., Zhang, Y., Zhang, L., Xie, Y., Zhou, W., Chen, W. and Chen, Y., J. Phys. Chem. C, 2015, 119:11619  doi: 10.1021/acs.jpcc.5b01540

    19. [19]

      Dennler, G., Scharber, M.C., Ameri, T., Denk, P., Forberich, K., Waldauf, C. and Brabec, C. J., Adv. Mater., 2008, 20:579  doi: 10.1002/(ISSN)1521-4095

    20. [20]

      Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M. and Heeger, A.J., Science, 2007, 317:222  doi: 10.1126/science.1141711

    21. [21]

      Chen, Y.C., Hsu, C.Y., Lin, R.Y.Y., Ho, K.C. and Lin, J.T., ChemSusChem, 2013, 6:20  doi: 10.1002/cssc.201200609

    22. [22]

      Heeger, A.J., Adv. Mater., 2014, 26:10  doi: 10.1002/adma.201304373

    23. [23]

      Huang, Y., Kramer, E.J., Heeger, A.J. and Bazan, G.C., Chem. Rev., 2014, 114:7006  doi: 10.1021/cr400353v

    24. [24]

      Dang, M.T., Hirsch, L., Wantz, G. and Wuest, J.D., Chem. Rev., 2013, 113:3734  doi: 10.1021/cr300005u

    25. [25]

      Lu, L., Zheng, T., Wu, Q., Schneider, A.M., Zhao, D. and Yu, L., Chem. Rev., 2015, 115:12666  doi: 10.1021/acs.chemrev.5b00098

    26. [26]

      Cheng, Y.J., Yang, S.H. and Hsu, C.S., Chem. Rev., 2009, 109:5868  doi: 10.1021/cr900182s

    27. [27]

      Ma, W., Reinspach, J., Zhou, Y., Diao, Y., McAfee, T., Mannsfeld, S.C.B., Bao, Z. and Ade, H., Adv. Funct. Mater., 2015, 25:3131  doi: 10.1002/adfm.v25.21

    28. [28]

      Lu, L., Kelly, M.A., You, W. and Yu, L., Nat. Photon., 2015, 9:491  doi: 10.1038/nphoton.2015.128

    29. [29]

      Lyons, B.P., Clarke, N. and Groves, C., Energy Environ. Sci., 2012, 5:7657  doi: 10.1039/c2ee21327c

    30. [30]

      Venkatesan, S., Chen, J., Ngo, E.C., Dubey, A., Khatiwada, D., Zhang, C. and Qiao, Q., Nano Energy, 2015, 12:457  doi: 10.1016/j.nanoen.2014.12.027

    31. [31]

      Ma, W., Tumbleston, J.R., Wang, M., Gann, E., Huang, F. and Ade, H., Adv. Energy Mater., 2013, 3:864  doi: 10.1002/aenm.v3.7

    32. [32]

      Mazzio, K.A. and Luscombe, C.K., Chem. Soc. Rev., 2015, 44:78  doi: 10.1039/C4CS00227J

    33. [33]

      Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H. and Yan, H., Nat. Commun., 2014, 5:5293  doi: 10.1038/ncomms6293

    34. [34]

      Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W. and Yan, H., Nat. Energy, 2016, 1:15027  doi: 10.1038/nenergy.2015.27

    35. [35]

      McIntosh, L.D., Schulze, M.W., Irwin, M.T., Hillmyer, M.A. and Lodge, T.P., Macromolecules, 2015, 48:1418  doi: 10.1021/ma502281k

    36. [36]

      Chen, L.M., Hong, Z., Li, G. and Yang, Y., Adv. Mater., 2009, 21:1434  doi: 10.1002/adma.v21:14/15

    37. [37]

      Moulé, A.J. and Meerholz, K., Adv. Funct. Mater., 2009, 19:3028  doi: 10.1002/adfm.v19:19

    38. [38]

      Lin, Y., Wang, J., Li, T., Wu, Y., Wang, C., Han, L., Yao, Y., Ma, W. and Zhan, X., J. Mater. Chem. A, 2016, 4:1486  doi: 10.1039/C5TA10424F

    39. [39]

      Fang, J., Wang, Z., Zhang, J., Zhang, Y., Deng, D., Wang, Z., Lu, K., Ma, W. and Wei, Z., Adv. Sci., 2015, 2:1500250  doi: 10.1002/advs.201500250

    40. [40]

      Ye, L., Zhang, S., Ma, W., Fan, B., Guo, X., Huang, Y., Ade, H. and Hou, J., Adv. Mater., 2012, 24:6335  doi: 10.1002/adma.201202855

    41. [41]

      Ma, W., Ye, L., Zhang, S., Hou, J. and Ade, H., J. Mater. Chem. C, 2013, 1:5023  doi: 10.1039/c3tc30679h

    42. [42]

      Cheng, P., Yan, C., Li, Y., Ma, W. and Zhan, X., Energy Environ. Sci., 2015, 8:2357  doi: 10.1039/C5EE01838B

    43. [43]

      Guo, X., Cui, C., Zhang, M., Huo, L., Huang, Y., Hou, J. and Li, Y., Energy Environ. Sci., 2012, 5:7943  doi: 10.1039/c2ee21481d

    44. [44]

      Liao, X.F., Wang, J., Chen, S.Y., Chen, L. and Chen, Y.W., Chinese J. Polym. Sci., 2016, 34:491  doi: 10.1007/s10118-016-1761-0

    45. [45]

      Deng, X.Y., Zheng, L.P., Mo, Y.Q., Yu, G., Yang W., Weng, W.H. and Cao, Y., Chinese J. Polym. Sci., 2001, 19:597

    46. [46]

      Ma, W., Tumbleston, J.R., Ye, L., Wang, C., Hou, J. and Ade, H., Adv. Mater., 2014, 26:4234  doi: 10.1002/adma.v26.25

    47. [47]

      Ma, W., Yang, G., Jiang, K., Carpenter, J.H., Wu, Y., Meng, X., McAfee, T., Zhao, J., Zhu, C., Wang, C., Ade, H. and Yan, H., Adv. Energy Mater., 2015, 5:1501400  doi: 10.1002/aenm.201501400

    48. [48]

      An, Q., Zhang, F., Zhang, J., Tang, W., Deng, Z. and Hu, B., Energy Environ. Sci., 2016, 9:281  doi: 10.1039/C5EE02641E

    49. [49]

      Tumbleston, J.R., Collins, B.A., Yang, L., Stuart, A.C., Gann, E., Ma, W., You, W. and Ade, H., Nat. Photon., 2014, 8:385  doi: 10.1038/nphoton.2014.55

    50. [50]

      Bechara, R., Leclerc, N., Lévêque, P., Richard, F., Heiser, T. and Hadziioannou, G., Appl. Phys. Lett., 2008, 93:013306  doi: 10.1063/1.2927480

    51. [51]

      Lim, E., Lee, S. and Lee, K.K., Chem. Commun., 2011, 47:914  doi: 10.1039/C0CC03962D

    52. [52]

      Zhang, L., Zhou, W., Shi, J., Hu, T., Hu, X., Zhang, Y. and Chen, Y., J. Mater. Chem. C, 2015, 3:809  doi: 10.1039/C4TC02470B

    53. [53]

      Gu, Y., Wang, C., Liu, F., Chen, J., Dyck, O.E., Duscher, G. and Russell, T.P., Energy Environ. Sci., 2014, 7:3782  doi: 10.1039/C4EE02004A

    54. [54]

      Lu, L. and Yu, L., Adv. Mater., 2014, 26:4413  doi: 10.1002/adma.v26.26

    55. [55]

      Zhang, S., Zuo, L., Chen, J., Zhang, Z., Mai, J., Lau, T.K., Lu, X., Shi, M. and Chen, H., J. Mater. Chem. A, 2016, 4:1702  doi: 10.1039/C5TA09727D

    56. [56]

      Lu, L., Xu, T., Chen, W., Landry, E.S. and Yu, L., Nat. Photon., 2014, 8:716  doi: 10.1038/nphoton.2014.172

    57. [57]

      Lu, L., Chen, W., Xu, T. and Yu, L., Nat. Commun., 2015, 6:7327  doi: 10.1038/ncomms8327

    58. [58]

      Zhang, J., Zhang, Y., Fang, J., Lu, K., Wang, Z., Ma, W. and Wei, Z., J. Am. Chem. Soc., 2015, 137:8176  doi: 10.1021/jacs.5b03449

    59. [59]

      Zhang, Y., Deng, D., Lu, K., Zhang, J., Xia, B., Zhao, Y., Fang, J. and Wei, Z., Adv. Mater., 2015, 27:1071  doi: 10.1002/adma.201404902

    60. [60]

      van der Poll, T.S., Love, J.A., Nguyen, T.Q. and Bazan, G.C., Adv. Mater., 2012, 24:3646  doi: 10.1002/adma.v24.27

    61. [61]

      Love, J.A., Proctor, C.M., Liu, J., Takacs, C.J., Sharenko, A., van der Poll, T.S., Heeger, A.J., Bazan, G.C. and Nguyen, T.Q., Adv. Funct. Mater., 2013, 23:5019  doi: 10.1002/adfm.v23.40

    62. [62]

      Zhang, L., Pu, M., Zhou, W., Hu, X., Zhang, Y., Xie, Y., Liu, B. and Chen, Y., J. Phys. Chem. C, 2015, 119:23310  doi: 10.1021/acs.jpcc.5b04850

    63. [63]

      Huang, Y., Wen, W., Mukherjee, S., Ade, H., Kramer, E.J. and Bazan, G.C., Adv. Mater., 2014, 26:4168  doi: 10.1002/adma.v26.24

    64. [64]

      Graham, K.R., Mei, J., Stalder, R., Shim, J.W., Cheun, H., Steffy, F., So, F., Kippelen, B. and Reynolds, J.R., ACS Appl. Mater. Interfaces, 2011, 3:1210  doi: 10.1021/am2000328

    65. [65]

      Liu, T., Guo, Y., Yi, Y., Huo, L., Xue, X., Sun, X., Fu, H., Xiong, W., Meng, D., Wang, Z., Liu, F., Russell, T.P. and Sun, Y., Adv. Mater., 2016, DOI:10.1002/adma.201602570  doi: 10.1002/adma.201602570

    66. [66]

      Wang, Z., Zhang, Y., Zhang, J., Wei, Z. and Ma, W., Adv. Energy Mater., 2016, 6:1502456  doi: 10.1002/aenm.201502456

    67. [67]

      Fang, J., Wang, Z., Zhang, J., Zhang, Y., Deng, D., Wang, Z., Lu, K., Ma, W. and Wei, Z., Adv. Sci., 2015, 2:1500250  doi: 10.1002/advs.201500250

    68. [68]

      Gasparini, N., Jiao, X., Heumueller, T., Baran, D., Matt, G.J., Fladischer, S., Spiecker, E., Ade, H., Brabec, C.J. and Ameri, T., Nat. Energy, 2016, 1:16118  doi: 10.1038/nenergy.2016.118

    69. [69]

      Huang, J.S., Goh, T., Li, X., Sfeir, M.Y., Bielinski, E.A., Tomasulo, S., Lee, M.L., Hazari, N. and Taylor, A.D., Nat. Photon., 2013, 7:479  doi: 10.1038/nphoton.2013.82

    70. [70]

      Chang, S.Y., Liao, H.C., Shao, Y.T., Sung, Y.M., Hsu, S.H., Ho, C.C., Su, W.F. and Chen, Y.F., J. Mater. Chem. A, 2013, 1:2447  doi: 10.1039/c2ta00990k

    71. [71]

      Campoy-Quiles, M., Kanai, Y., El-Basaty, A., Sakai, H. and Murata, H., Org. Electron., 2009, 10:1120  doi: 10.1016/j.orgel.2009.05.028

    72. [72]

      An, Q., Zhang, F., Sun, Q., Wang, J., Li, L., Zhang, J., Tang, W. and Deng, Z., J. Mater. Chem. A, 2015, 3:16653  doi: 10.1039/C5TA04243G

    73. [73]

      Cheng, P., Li, Y. and Zhan, X., Energy Environ. Sci., 2014, 7:2005  doi: 10.1039/c3ee44202k

    74. [74]

      Cheng, P., Yan, C., Wu, Y., Wang, J., Qin, M., An, Q., Cao, J., Huo, L., Zhang, F., Ding, L., Sun, Y., Ma, W. and Zhan, X., Adv. Mater., 2016, 28:8021  doi: 10.1002/adma.201602067

    75. [75]

      Huang, T.Y., Patra, D., Hsiao, Y.S., Chang, S.H., Wu, C.G., Ho, K.C. and Chu, C.W., J. Mater. Chem. A, 2015, 3:10512  doi: 10.1039/C5TA00592B

    76. [76]

      Liu, H.W., Chang, D.Y., Chiu, W.Y., Rwei, S.P. and Wang, L., J. Mater. Chem., 2012, 22:15586  doi: 10.1039/c2jm32444j

    77. [77]

      Chan, S.H., Lai, C.S., Chen, H.L., Ting, C. and Chen, C.P., Macromolecules, 2011, 44:8886  doi: 10.1021/ma201425d

    78. [78]

      Lu, H., Zhang, J., Chen, J., Liu, Q., Gong, X., Feng, S., Xu, X., Ma, W. and Bo, Z., Adv. Mater., 2016, DOI:10.1002/adma.201603588  doi: 10.1002/adma.201603588

    79. [79]

      Yang, L., Yan, L. and You, W., J. Phys. Chem. Lett., 2013, 4:1802  doi: 10.1021/jz400723u

    80. [80]

      Yang, L., Zhou, H., Price, S.C. and You, W., J. Am. Chem. Soc., 2012, 134:5432  doi: 10.1021/ja211597w

    81. [81]

      Zhang, M., Zhang, F., Wang, J., An, Q. and Sun, Q., J. Mater. Chem. C, 2015, 3:11930

    82. [82]

      Khlyabich, P.P., Burkhart, B. and Thompson, B.C., J. Am. Chem. Soc., 2011, 133:14534  doi: 10.1021/ja205977z

    83. [83]

      Street, R.A., Davies, D., Khlyabich, P.P., Burkhart, B. and Thompson, B.C., J. Am. Chem. Soc., 2013, 135:986  doi: 10.1021/ja3112143

    84. [84]

      Khlyabich, P.P., Burkhart, B. and Thompson, B.C., J. Am. Chem. Soc., 2012, 134:9074  doi: 10.1021/ja302935n

    85. [85]

      Khlyabich, P.P., Rudenko, A.E., Street, R.A. and Thompson, B.C., ACS Appl. Mater. Interfaces, 2014, 6:9913  doi: 10.1021/am502122a

    86. [86]

      Khlyabich, P.P., Rudenko, A.E., Thompson, B.C. and Loo, Y.L., Adv. Funct. Mater., 2015, 25:5557  doi: 10.1002/adfm.201502287

    87. [87]

      Liu, T., Huo, L., Sun, X., Fan, B., Cai, Y., Kim, T., Kim, J.Y., Choi, H. and Sun, Y., Adv. Energy Mater., 2016, 6:1502109  doi: 10.1002/aenm.201502109

    88. [88]

      Angmo, D., Bjerring, M., Nielsen, N.C., Thompson, B.C. and Krebs, F.C., J. Mater. Chem. C, 2015, 3:5541  doi: 10.1039/C5TC00781J

    89. [89]

      An, Q., Zhang, F., Li, L., Wang, J., Sun, Q., Zhang, J., Tang, W. and Deng, Z., ACS Appl. Mater. Interfaces, 2015, 7:3691  doi: 10.1021/acsami.5b00308

  • 加载中
    1. [1]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    2. [2]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    3. [3]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    4. [4]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    5. [5]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    6. [6]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    7. [7]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    8. [8]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    9. [9]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    10. [10]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    11. [11]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    12. [12]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    14. [14]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    15. [15]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    16. [16]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    17. [17]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    18. [18]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    19. [19]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    20. [20]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

Metrics
  • PDF Downloads(0)
  • Abstract views(851)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return