Citation: Meng-na Yu, Chang-jin Ou, Bin Liu, Dong-qing Lin, Yu-yu Liu, Wei Xue, Zong-qiong Lin, Jin-yi Lin, Yan Qian, Sha-sha Wang, Hong-tao Cao, Lin-yi Bian, Ling-hai Xie, Wei Huang. Progress in Fluorene-based Wide-bandgap Steric Semiconductors[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 155-170. doi: 10.1007/s10118-017-1897-6 shu

Progress in Fluorene-based Wide-bandgap Steric Semiconductors

  • Corresponding author: Ling-hai Xie, iamlhxie@njupt.edu.cn Wei Huang, iamwhuang@njupt.edu.cn
  • Received Date: 5 October 2016
    Revised Date: 10 November 2016
    Accepted Date: 16 November 2016

    Fund Project: Jiangsu Planned Projects for Postdoctoral Research Funds 1501019Bthe National Natural Science Foundation of China 61136003the National Natural Science Foundation of China 61475074University of Jiangsu Province Natural Science Foundation Project 14KJB510027the National Natural Science Funds for Excellent Young Scholar 21322402Natural Science Foundation of Jiangsu Province BM2012010Excellent Science and Technology Innovation Team of Jiangsu Higher Education Institutions, Synergetic Innovation Center for Organic Electronics and Information Displays, Natural Science of the Education Committee of Jiangsu Province 15KJB430019the National Natural Science Foundation of China 21274064the National Natural Science Foundation of China 21504041

  • Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we present our progress in the design of fluorene-based bulky semiconductors with a fractal four-element pattern. Firstly, we established one-pot methods to spirofluorenes, especially spiro[fluorene-9, 9'-xanthene] (SFX) serving as the next-generation spiro-based semiconductors. Secondly, we observed the supramolecular forces at the bulky groups and discovered the supramolecular steric hindrance (SSH) effect on polymorphisms, nanocrystals as well as device performance. Thus, a synergistically molecular attractor-repulsor theory (SMART) was proposed for the control of nanocrystal morphology, thin film phase and morphology. Thirdly, the third possible type of defects has been identified to generate green band (g-band) emission in wide-bandgap semiconductors by the introduction of molecular strain design of cyclofluorene. Finally, the first bulky polydiarylfluorene with highly crystalline and β conformation was achieved by an attractor-repulsor design of tadpole-shape monomer, which offered an effective platform to fabricate stable wide-bandgap semiconducting devices. All the discoveries offer the solid basis to break through bottlenecks of organic/polymer wide-bandgap semiconductors by the improvements of overall performances.
  • 加载中
    1. [1]

      Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burn, P.L. and Holmes, A.B., Nature, 1990, 347:539  doi: 10.1038/347539a0

    2. [2]

      Gustafsson, G., Cao, Y., Treacy, G.M., Klavetter, F., Colaneri, N. and Heeger, A.J., Nature, 1992, 357:477  doi: 10.1038/357477a0

    3. [3]

      Forrest, S.R., Nature, 2004, 428:911  doi: 10.1038/nature02498

    4. [4]

      Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K. and Heeger, A.J., J. Chem. Soc., Chem. Commun., 1977:578

    5. [5]

      Heeger, A.J., Chinese J. Polym. Sci., 2001, 19:545

    6. [6]

      Koezuka, H., Tsumura, A. and Ando, T., Synth. Met., 1987, 18:699  doi: 10.1016/0379-6779(87)90964-7

    7. [7]

      Chen, S.F., Deng, L.L., Xie, J., Peng, L., Xie, L.H., Fan, Q.L. and Huang, W., Adv. Mater., 2010, 22:5227  doi: 10.1002/adma.201001167

    8. [8]

      Sun, M.L., Zhong, C.M., Li, F. and Pei, Q.B., Chinese J. Polym. Sci., 2012, 30:503  doi: 10.1007/s10118-012-1132-4

    9. [9]

      Heliotis, G., Xia, R., Bradley, D.D.C., Turnbull, G.A., Samuel, I.D.W., Andrew, P. and Barnes, W.L., Appl. Phys. Lett., 2003, 83:2118  doi: 10.1063/1.1612903

    10. [10]

      McGehee, M.D. and Heeger, A.J., Adv. Mater., 2000, 12:1655  doi: 10.1002/(ISSN)1521-4095

    11. [11]

      Ren, B.Y., Ou, C.J., Zhang, C., Chang, Y.Z., Yi, M.D., Liu, J.Q., Xie, L.H., Zhang, G.W., Deng, X.Y., Li, S.B., Wei, W. and Huang, W., J. Phys. Chem. C, 2012, 116:8881  doi: 10.1021/jp212254g

    12. [12]

      Zhang, L.Z., Yang, T.B., Shen, L., Fang, Y.J., Dang, L., Zhou, N.J., Guo, X.G., Hong, Z.R., Yang, Y., Wu, H.B., Huang, J.S. and Liang, Y.Y., Adv. Mater., 2015, 27:6496  doi: 10.1002/adma.201502267

    13. [13]

      Lin, J.Y., Li, W., Yu, Z.Z., Yi, M.D., Ling, H.F., Xie, L.H., Li, S.B. and Huang, W., J. Mater. Chem. C, 2014, 2:3738  doi: 10.1039/c3tc32441a

    14. [14]

      Bao, Z.N. and Chen, X.D., Adv. Mater., 2016, 28:4177  doi: 10.1002/adma.v28.22

    15. [15]

      Liang, J.J., Tong, K. and Pei, Q.B., Adv. Mater., 2016, 28:5986  doi: 10.1002/adma.201600772

    16. [16]

      White, M.S., Kaltenbrunner, M., Glowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Scharber, M.C., Sekitani, T., Someya, T., Bauer, S. and Sariciftci, N.S., Nat. Photon., 2013, 7:811  doi: 10.1038/nphoton.2013.188

    17. [17]

      Xie, L.H., Yang, S.H., Lin, J.Y., Yi, M.D. and Huang, W., Phil. Trans. R. Soc. A, 2013, 371:20120337  doi: 10.1098/rsta.2012.0337

    18. [18]

      Sun, M.L., Zhu, W.S., Zhang, Z.S., Ou, C.J., Xie, L.H., Yang, Y., Qian, Y., Zhao, Y. and Huang, W., J. Mater. Chem. C, 2015, 3:94  doi: 10.1039/C4TC01963F

    19. [19]

      Yang, Y., Liu, Z.D., Yin, Z.Y., Du, Z.H., Xie, L.H., Yi, M.D., Liu, J.Q. and Huang, W., RSC Adv., 2014, 4:55671  doi: 10.1039/C4RA06147K

    20. [20]

      Ai, W., Luo, Z.M., Jiang, J., Zhu, J.H., Du, Z.Z., Fan, Z.X., Xie, L.H., Zhang, H., Huang, W. and Yu, T., Adv. Mater., 2014, 26:6186  doi: 10.1002/adma.201401427

    21. [21]

      Yu, W.L., Liu, B., Pei, J., Zeng, G. and Huang, W., Chinese J. Polym. Sci., 2001, 19:603

    22. [22]

      Yu, W.L., Pei, J., Huang, W. and Heeger, A.J., Adv. Mater., 2000, 12:828  doi: 10.1002/(ISSN)1521-4095

    23. [23]

      Yin, X.X., An, Q.S., Yu, J.S., Guo, F.N., Geng, Y.L., Bian, L.Y., Xu, Z.S., Zhou, B.J., Xie, L.H., Zhang, F.J. and Tang, W.H., Sci. Rep., 2016, 6

    24. [24]

      Zhang, Z.G. and Li, Y., Sci. China Chem., 2015, 58:192  doi: 10.1007/s11426-014-5260-2

    25. [25]

      Mei, J.G. and Bao, Z.N., Chem. Mater., 2014, 26:604  doi: 10.1021/cm4020805

    26. [26]

      Kang, I., Yun, H. J., Chung, D.S., Kwon, S.K. and Kim, Y.H., J. Am. Chem. Soc., 2013, 135:14896  doi: 10.1021/ja405112s

    27. [27]

      Shi, Q.Q., Fan, H.J., Liu, Y., Chen, J.M., Ma, L.C., Hu, W.P., Shuai, Z.G., Li, Y.F. and Zhan, X.W., Macromolecules, 2011, 44:4230  doi: 10.1021/ma200576y

    28. [28]

      Johansson, N., dosSantos, D.A., Guo, S., Cornil, J., Fahlman, M., Salbeck, J., Schenk, H., Arwin, H., Bredas, J.L. and Salanek, W.R., J. Chem. Phys., 1997, 107:2542  doi: 10.1063/1.474615

    29. [29]

      Wong, K.T., Wang, Z.J., Chien, Y.Y. and Wang, C.L., Org. Lett., 2001, 3:2285  doi: 10.1021/ol016051y

    30. [30]

      Saragi, T.P.I., Spehr, T., Siebert, A., Fuhrmann-Lieker, T. and Salbeck, J., Chem. Rev., 2007, 107:1011  doi: 10.1021/cr0501341

    31. [31]

      Nakagawa, T., Ku, S.Y., Wong, K.T. and Adachi, C., Chem. Commun., 2012, 48:9580  doi: 10.1039/c2cc31468a

    32. [32]

      Wu, C.L., Chen, C.T. and Chen, C.T., Org. Lett., 2014, 16:2114  doi: 10.1021/ol5005214

    33. [33]

      Fabregat-Santiago, F., Bisquert, J., Cevey, L., Chen, P., Wang, M.K., Zakeeruddin, S.M. and Gratzel, M., J. Am. Chem. Soc., 2009, 131:558  doi: 10.1021/ja805850q

    34. [34]

      Saragi, T.P.I., Fuhrmann-Lieker, T. and Salbeck, J., Synth. Met., 2005, 148:267  doi: 10.1016/j.synthmet.2004.10.007

    35. [35]

      Nakanotani, H., Akiyama, S., Ohnishi, D., Moriwake, M., Yahiro, M., Yoshihara, T., Tobita, S. and Adachi, C., Adv. Funct. Mater., 2007, 17:2328  doi: 10.1002/(ISSN)1616-3028

    36. [36]

      Saragi, T.P.I., Pudzich, R., Fuhrmann-Lieker, T. and Salbeck, J., Opt. Mater., 2007, 29:879  doi: 10.1016/j.optmat.2006.01.013

    37. [37]

      Schneider, D., Rabe, T., Riedl, T., Dobbertin, T., Werner, O., Kroger, M., Becker, E., Johannes, H.H., Kowalsky, W., Weimann, T., Wang, J., Hinze, P., Gerhard, A., Stossel, P. and Vestweber, H., Appl. Phys. Lett., 2004, 84:4693  doi: 10.1063/1.1760227

    38. [38]

      Lin, H.W., Ku, S.Y., Su, H.C., Huang, C.W., Lin, Y.T., Wong, K.T. and Wu, C.C., Adv. Mater., 2005, 17:2489  doi: 10.1002/(ISSN)1521-4095

    39. [39]

      Clarkson, R.G. and Gomberg, M., J. Am. Chem. Soc., 1930, 52:2881  doi: 10.1021/ja01370a048

    40. [40]

      Xie, L.H., Liu, F., Tang, C., Hou, X.Y., Hua, Y.R., Fan, Q.L. and Huang, W., Org. Lett., 2006, 8:2787  doi: 10.1021/ol060871z

    41. [41]

      Lin, D.Q., Sun, M.L., Wei, Y., Xie, L.H., Zhang, X.N. and Huang, W., Chin. Sci. Bull., 2015, 60:1237  doi: 10.1360/N972015-00232

    42. [42]

      Hagfeldt, A. and Sun, L.C., Energy Environ. Sci., 2016, 9:873  doi: 10.1039/C6EE00056H

    43. [43]

      Maciejczyk, M., Ivaturi, A. and Robertson, N., J. Mater. Chem. A, 2016, 4:4855  doi: 10.1039/C6TA00110F

    44. [44]

      Xie, L.H., Liang, J., Song, J., Yin, C.R. and Huang, W., Curr. Org. Chem., 2010, 14:2169  doi: 10.2174/138527210793351599

    45. [45]

      Liu, F., Xie, L.H., Tang, C., Liang, J., Chen, Q.Q., Peng, B., Wei, W., Cao, Y. and Huang, W., Org. Lett., 2009, 11:3850  doi: 10.1021/ol900978x

    46. [46]

      Sun, M.L., Yue, S.Z., Lin, J.R., Ou, C.J., Qian, Y., Zhang, Y., Li, Y., Wei, Q., Zhao, Y., Xie, L.H. and Huang, W., Synth. Met., 2014, 195:321  doi: 10.1016/j.synthmet.2014.06.022

    47. [47]

      Lin, Z.Q., Sun, P.J., Tay, Y.Y., Liang, J., Liu, Y., Shi, N.E., Xie, L.H., Yi, M.D., Qian, Y., Fan, Q.L., Zhang, H., Hng, H.H., Ma, J., Zhang, Q. and Huang, W., ACS Nano, 2012, 6:5309  doi: 10.1021/nn3011398

    48. [48]

      Sun, M.L., Xu, R.C., Xie, L.H., Wei, Y. and Huang, W., Chin. J. Chem., 2015, 33:815  doi: 10.1002/cjoc.v33.8

    49. [49]

      Xie, L.H., Hou, X.Y., Hua, Y.R., Tang, C., Liu, F., Fan, Q.L. and Huang, W., Org. Lett., 2006, 8:3701  doi: 10.1021/ol061268j

    50. [50]

      Cao, X., Yang, W.D., Liu, C., Wei, F.L., Wu, K., Sun, W., Song, J., Xie, L.H. and Huang, W., Org. Lett., 2013, 15:3102  doi: 10.1021/ol4013052

    51. [51]

      Lin, J.Y., Zhu, W.S., Liu, F., Xie, L.H., Zhang, L., Xia, R., Xing, G.C. and Huang, W., Macromolecules, 2014, 47:1001  doi: 10.1021/ma402585n

    52. [52]

      Yang, Y., Zhao, J.F., Liu, R.R., Li, J.W., Yi, M.D., Xie, G.H., Xie, L.H., Chang, Y.Z., Yin, C.R., Zhou, X.H., Zhao, Y., Qian, Y. and Huang, W., Tetrahedron, 2013, 69:6317  doi: 10.1016/j.tet.2013.02.090

    53. [53]

      Gu, J.F., Xie, G.H., Zhang, L., Chen, S.F., Lin, Z.Q., Zhang, Z.S., Zhao, J.F., Xie, L.H., Tang, C., Zhao, Y., Liu, S.Y. and Huang, W., J. Phys. Chem. Lett., 2010, 1:2849  doi: 10.1021/jz101039d

    54. [54]

      Ou, C.J., Lei, Z.F., Sun, M.L., Xie, L.H., Qian, Y., Zhang, X.W. and Huang, W., Synth. Met., 2015, 200:135  doi: 10.1016/j.synthmet.2014.12.034

    55. [55]

      Hou, X.Y., Li, T.C., Yin, C.R., Xu, H., Lin, J., Hua, Y.R., Chen, D.Y., Xie, L.H. and Huang, W., Synth. Met., 2009, 159:1055  doi: 10.1016/j.synthmet.2009.01.032

    56. [56]

      Chang, Y.Z., Shao, Q., Bai, L.Y., Ou, C.J., Lin, J.Y., Xie, L.H., Liu, Z.D., Chen, X., Zhang, G.W. and Huang, W., Small, 2013, 9:3218

    57. [57]

      Zhao, B.M., Fu, N.N., Xie, L.H., Wang, L.H. and Huang, W., Chem. Lett., 2008, 37:622  doi: 10.1246/cl.2008.622

    58. [58]

      Liu, Z.D., Chang, Y.Z., Ou, C.J., Lin, J.Y., Xie, L.H., Yin, C.R., Yi, M.D., Qian, Y., Shi, N.E. and Huang, W., Polym. Chem., 2011, 2:2179  doi: 10.1039/c1py00203a

    59. [59]

      Wang, L., Zhang, G.W., Ou, C.J., Xie, L.H., Lin, J.Y., Liu, Y.Y. and Huang, W., Org. Lett., 2014, 16:1748  doi: 10.1021/ol500439z

    60. [60]

      Ou, C.J., Zhao, D.W., Zhang, C., Wang, F.N., Wang, L., Xie, L.H., Ren, B.Y., Sun, X.W., Li, S.B., Zhang, G.W. and Huang, W., Synth. Met., 2014, 187:118  doi: 10.1016/j.synthmet.2013.10.030

    61. [61]

      Zhang, G.W., Wang, L., Xie, L.H., Hou, X.Y., Liu, Z.D. and Huang, W., J. Nanomater., 2013:368202

    62. [62]

      Liu, F., Liu, J.Q., Liu, R.R., Hou, X.Y., Xie, L.H., Wu, H.B., Tang, C., Wei, W., Cao, Y. and Huang, W., J. Polym. Sci., Part A:Polym. Chem., 2009, 47:6451  doi: 10.1002/pola.v47:23

    63. [63]

      Xie, L.H., Hou, X.Y., Hua, Y.R., Huang, Y.Q., Zhao, B.M., Liu, F., Peng, B., Wei, W. and Huang, W., Org. Lett., 2007, 9:1619  doi: 10.1021/ol070006u

    64. [64]

      Xie, L.H. and Huang, W., "Supramolecular steric hindrance at bulky organic/polymer semiconductors and devices", ed. by Abel M.M., Kamran T.M., Maximilian N.K., and Armando J.L.P., John Wiley & Sons, Inc. 2016, p. 443

    65. [65]

      Xie, L.H., Zhu, R., Qian, Y., Liu, R.R., Chen, S.F., Lin, J. and Huang, W., J. Phys. Chem. Lett., 2010, 1:272  doi: 10.1021/jz900105v

    66. [66]

      Lin, Z.Q., Liang, J., Sun, P.J., Liu, F., Tay, Y.Y., Yi, M.D., Peng, K., Xia, X.H., Xie, L.H., Zhou, X.H., Zhao, J.F. and Huang, W., Adv. Mater., 2013, 25:3664  doi: 10.1002/adma.v25.27

    67. [67]

      Lin, J.Y., Yu, Z.Z., Zhu, W.S., Xing, G.C., Lin, Z.Q., Yang, S.H., Xie, L.H., Niu, C.L. and Huang, W., Polym. Chem., 2013, 4:477  doi: 10.1039/C2PY20618H

    68. [68]

      Yu, W.L., Meng, H., Pei, J. and Huang, W., J. Am. Chem. Soc., 1998, 120:11808  doi: 10.1021/ja982561k

    69. [69]

      Jiang, G.X., Bian, C.L., Ding, J.Q. and Wang, L.X., Chinese J. Polym. Sci., 2013, 31:787  doi: 10.1007/s10118-013-1279-7

    70. [70]

      Liang, J., Qian, Y., Xie, L.H., Shi, N.E., Chen, S.F., Deng, X.Y. and Huang, W., Acta Phys.-Chim. Sin., 2010, 26:946
       

    71. [71]

      Kappaun, S., Slugovc, C. and List, E.J.W., "Optically active chemical defects in polyfluorene-type polymers and devices", Springer, Berlin Heidelberg Berlin, 2008, p. 273

    72. [72]

      Kraft, A., Grimsdale, A.C. and Holmes, A.B., Angew. Chem. Int. Ed., 1998, 37:402  doi: 10.1002/(ISSN)1521-3773

    73. [73]

      Grimsdale, A.C., Chan, K.L., Martin, R.E., Jokisz, P.G. and Holmes, A.B., Chem. Rev., 2009, 109:897  doi: 10.1021/cr000013v

    74. [74]

      Donat-Bouillud, A., Levesque, I., Tao, Y., D'Iorio, M., Beaupre, S., Blondin, P., Ranger, M., Bouchard, J. and Leclerc, M., Chem. Mater., 2000, 12:1931  doi: 10.1021/cm0001298

    75. [75]

      Bernius, M.T., Inbasekaran, M., O'Brien, J. and Wu, W.S., Adv. Mater., 2000, 12:1737  doi: 10.1002/(ISSN)1521-4095

    76. [76]

      Hu, L.W., Yang, Y., Xu, J., Liang, J.F., Guo, T., Zhang, B., Yang, W. and Cao, Y., J. Mater. Chem. C, 2016, 4:1305  doi: 10.1039/C5TC03197D

    77. [77]

      Zheng, H., Zheng, Y.N., Liu, N.L., Ai, N., Wang, Q., Wu, S., Zhou, J.H., Hu, D.G., Yu, S.F., Han, S.H., Xu, W., Luo, C., Meng, Y.H., Jiang, Z.X., Chen, Y.W., Li, D.Y., Huang, F., Wang, J., Peng, J.B. and Cao, Y., Nat. Commun., 2013, 4:1971

    78. [78]

      Lee, B.R., Kim, J.W., Kang, D., Lee, D.W., Ko, S.J., Lee, H.J., Lee, C.L., Kim, J.Y., Shin, H.S. and Song, M.H., ACS Nano, 2012, 6:2984  doi: 10.1021/nn300280q

    79. [79]

      Chang, Y.T., Jen, T.H. and Chen, S.A., Org. Electron., 2013, 14:2948  doi: 10.1016/j.orgel.2013.08.019

    80. [80]

      Intemann, J.J., Hellerich, E.S., Tlach, B.C., Ewan, M.D., Barnes, C.A., Bhuwalka, A., Cai, M., Shinar, J., Shinar, R. and Jeffries-El, M., Macromolecules, 2012, 45:6888  doi: 10.1021/ma300821m

    81. [81]

      Zhang, X.W., Lei, Z.F., Hu, Q., Lin, J.Y., Chen, Y.H., Xie, L.H., Lai, W.Y. and Huang, W., Appl. Phys. Express, 2014, 7:101601  doi: 10.7567/APEX.7.101601

    82. [82]

      Persano, L., Camposeo, A., Di Benedetto, F., Stabile, R., Laera, A.M., Piscopiello, E., Tapfer, L. and Pisignano, D., Adv. Mater., 2012, 24:5320  doi: 10.1002/adma.201202440

    83. [83]

      van Reenen, S., Akatsuka, T., Tordera, D., Kemerink, M. and Bolink, H.J., J. Am. Chem. Soc., 2013, 135:886  doi: 10.1021/ja3107803

    84. [84]

      Lemmer, U., Heun, S., Mahrt, R.F., Scherf, U., Hopmeier, M., Siegner, U., Gobel, E.O., Mullen, K. and Bassler, H., Chem. Phys. Lett., 1995, 240:373  doi: 10.1016/0009-2614(95)00512-3

    85. [85]

      Pei, Q.B. and Yang, Y., J. Am. Chem. Soc., 1996, 118:7416  doi: 10.1021/ja9615233

    86. [86]

      Klarner, G., Davey, M.H., Chen, W.D., Scott, J.C. and Miller, R.D., Adv. Mater., 1998, 10:993  doi: 10.1002/(ISSN)1521-4095

    87. [87]

      Zeng, G., Yu, W.L., Chua, S.J. and Huang, W., Macromolecules, 2002, 35:6907  doi: 10.1021/ma020241m

    88. [88]

      Lee, J.I., Klaerner, G. and Miller, R.D., Chem. Mater., 1999, 11:1083  doi: 10.1021/cm981049v

    89. [89]

      Weinfurtner, K.H., Fujikawa, H., Tokito, S. and Taga, Y., Appl. Phys. Lett., 2000, 76:2502  doi: 10.1063/1.126389

    90. [90]

      Bliznyuk, V.N., Carter, S.A., Scott, J.C., Klarner, G., Miller, R.D. and Miller, D.C., Macromolecules, 1999, 32:361  doi: 10.1021/ma9808979

    91. [91]

      Grell, M., Bradley, D.D.C., Ungar, G., Hill, J. and Whitehead, K.S., Macromolecules, 1999, 32:5810  doi: 10.1021/ma990741o

    92. [92]

      List, E.J.W., Guentner, R., de Freitas, P.S. and Scherf, U., Adv. Mater., 2002, 14:374  doi: 10.1002/1521-4095(20020304)14:5<374::AID-ADMA374>3.0.CO;2-U

    93. [93]

      Gamerith, S., Gadermaier, C., Scherf, U. and List, E.J.W., Phys. Status Solidi A, 2004, 201:1132  doi: 10.1002/(ISSN)1521-396X

    94. [94]

      Abbel, R., Woffs, M., Bovee, R.A.A., van Dongen, J.L.J., Lou, X., Henze, O., Feast, W.J., Meijer, E.W. and Schenning, A., Adv. Mater., 2009, 21:597  doi: 10.1002/adma.200802416

    95. [95]

      Li, W.J., Liu, B., Qian, Y., Xie, L.H., Wang, J., Li, S.B. and Huang, W., Polym. Chem., 2013, 4:1796  doi: 10.1039/c2py20971c

    96. [96]

      Pei, J., Liu, X.L., Chen, Z.K., Zhang, X.H., Lai, Y.H. and Huang, W., Macromolecules, 2003, 36:323  doi: 10.1021/ma020744s

    97. [97]

      Koizumi, Y., Seki, S., Tsukuda, S., Sakamoto, S. and Tagawa, S., J. Am. Chem. Soc., 2006, 128:9036  doi: 10.1021/ja063056n

    98. [98]

      Zhu, L.N., Qin, J.G. and Yang, C.L. J. Phys. Chem. B, 2010, 114:14884  doi: 10.1021/jp1071567

    99. [99]

      Lin, J.Y., Wong, J.I., Xie, L.H., Dong, X.C., Yang, H.Y. and Huang, W., Macromol. Rapid Commun., 2014, 35:895  doi: 10.1002/marc.v35.9

    100. [100]

      Zhang, G.W., Wang, L., Xie, L.H., Lin, J.Y. and Huang, W., Int. J. Mol. Sci., 2013, 14:22368  doi: 10.3390/ijms141122368

    101. [101]

      Lin, Z.Q., Shi, N.E., Li, Y.B., Qiu, D., Zhang, L., Lin, J.Y., Zhao, J.F., Wang, C., Xie, L.H. and Huang, W., J. Phys. Chem. C, 2011, 115:4418  doi: 10.1021/jp109598y

    102. [102]

      Liu, Y.Y., Lin, J.Y., Bo, Y.F., Xie, L.H., Yi, M.D., Zhang, X.W., Zhang, H.M., Loh, T.P. and Huang, W., Org. Lett., 2016, 18:172  doi: 10.1021/acs.orglett.5b03038

    103. [103]

      Setayesh, S., Grimsdale, A.C., Weil, T., Enkelmann, V., Mullen, K., Meghdadi, F., List, E.J.W. and Leising, G., J. Am. Chem. Soc., 2001, 123:946  doi: 10.1021/ja0031220

    104. [104]

      Lupton, J.M., Schouwink, P., Keivanidis, P.E., Grimsdale, A.C. and Mullen, K., Adv. Func. Mater., 2003, 13:154  doi: 10.1002/adfm.200390022

    105. [105]

      Pogantsch, A., Wenzl, F.P., List, E.J.W., Leising, G., Grimsdale, A.C. and Mullen, K., Adv. Mater., 2002, 14:1061  doi: 10.1002/1521-4095(20020805)14:15<1061::AID-ADMA1061>3.0.CO;2-6

    106. [106]

      Nakazawa, Y.K., Carter, S.A., Nothofer, H.G., Scherf, U., Lee, V.Y., Miller, R.D. and Scott, J.C., Appl. Phys. Lett., 2002, 80:3832  doi: 10.1063/1.1473692

    107. [107]

      Hou, X.Y., Li, T.C., Liang, J., Chen, D.Y., Xie, L.H. and Huang, W., Acta Chimica Sinica (in Chinese), 2008, 66:2575

    108. [108]

      Liu, B., Lin, J.Y., Lei, Z.F., Sun, M.L., Xie, L.H., Xue, W., Yin, C.R., Zhang, X.W. and Huang, W., Macromol. Chem. Phys., 2015, 216:1043  doi: 10.1002/macp.v216.10

    109. [109]

      Bright, D.W., Dias, F.B., Galbrecht, F., Scherf, U. and Monkman, A.P., Adv. Funct. Mater., 2009, 19:67  doi: 10.1002/adfm.v19:1

    110. [110]

      Knaapila, M., Dias, F.B., Garamus, V.M., Almasy, L., Torkkeli, M., Leppanen, K., Galbrecht, F., Preis, E., Burrows, H.D., Scherf, U. and Monkman, A.P., Macromolecules, 2007, 40:9398  doi: 10.1021/ma0715728

    111. [111]

      Zhu, R., Lin, J.M., Wang, W.Z., Zheng, C., Wei, W., Huang, W., Xu, Y.H., Peng, J.B. and Cao, Y., J. Phys. Chem. B, 2008, 112:1611  doi: 10.1021/jp076234n

    112. [112]

      Bright, D.W., Galbrecht, F., Scherf, U. and Monkman, A.P., Macromolecules, 2010, 43:7860  doi: 10.1021/ma101570u

    113. [113]

      O'Carroll, D., Iacopino, D., O'Riordan, A., Lovera, P., O'Connor, E., O'Brien, G.A. and Redmond, G., Adv. Mater., 2008, 20:42  doi: 10.1002/(ISSN)1521-4095

    114. [114]

      Knaapila, M. and Monkman, A.P., Adv. Mater., 2013, 25:1090  doi: 10.1002/adma.201204296

    115. [115]

      Liu, B., Lin, J.Y., Liu, F., Yu, M.N., Zhang, X.W., Xia, R.D., Yang, T., Fang, Y.T., Xie, L.H. and Huang, W., ACS Appl. Mater. Interfaces, 2016, 8:21648  doi: 10.1021/acsami.6b05247

  • 加载中
    1. [1]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    2. [2]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    3. [3]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    4. [4]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    5. [5]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    6. [6]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    7. [7]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    8. [8]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    9. [9]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    10. [10]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    11. [11]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    12. [12]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    13. [13]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    14. [14]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    15. [15]

      Chuyuan Lin Hui Lin Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407

    16. [16]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    17. [17]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    18. [18]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    19. [19]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    20. [20]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

Metrics
  • PDF Downloads(0)
  • Abstract views(865)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return