Citation: Yi-kun Guo, Yun-ke Li, Han Han, He Yan, Dahui Zhao. All-Polymer Solar Cells with Perylenediimide Polymer Acceptors[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 293-301. doi: 10.1007/s10118-017-1893-x shu

All-Polymer Solar Cells with Perylenediimide Polymer Acceptors

  • Corresponding author: He Yan, hyan@ust.hk Dahui Zhao, dhzhao@pku.edu.cn
  • Received Date: 18 October 2016
    Revised Date: 31 October 2016
    Accepted Date: 2 November 2016

    Fund Project: the National Natural Science Foundation of China 21674001the National Natural Science Foundation of China 51473003

  • Four polymers based on perylenediimide co-polymerized with thiophene, bithiophene, selenophone and thieno[3, 2-b]thiophene were investigated as the acceptor materials in all-polymer solar cells. Two different donor polymers, poly[4, 8-bis (5-(2-ethylhexyl) thiophen-2-yl) benzo[1, 2-b; 4, 5-b']dithiophene-2, 6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3, 4-b]thiophene)-2-carboxylate-2, 6-diyl] (PTB7-Th) and poly[(5, 6-difluoro-2, 1, 3-benzothiadiazol-4, 7-diyl)-alt-(3, 3"'-di (2-dodecyltetradecyl)-2, 2';5', 2";5", 2"'-quaterthiophen-5, 5"'-diyl)] (PffBT4T-2DT), with suitably complementary absorption spectra and energy levels were applied and examined. Among all different donor-acceptor pairs studied here, the combination of PTB7-Th:poly[N,N'-bis (1-hexylheptyl)-3, 4, 9, 10-perylenediimide-1, 6/1, 7-diyl-alt-2, 5-thiophene] (PDI-Th) exhibited the best power conversion efficiency (PCE) of 5.13%, with open-circuit voltage (Voc)=0.79 V, short-circuit current density (Jsc)=12.35 mA·cm-2 and fill-factor (FF)=0.52. The polymer of PDI-Th acceptor used here had a regio-irregular backbone, conveniently prepared from a mixture of 1, 6-and 1, 7-dibromo-PDI. It is also noteworthy that neither additive nor post-treatment is required for obtaining such a cell performance.
  • 加载中
    1. [1]

      Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J., Science, 1995, 270:1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C. and Holmes, A.B., Nature, 1995, 376:498  doi: 10.1038/376498a0

    3. [3]

      He, Z.C., Zhong, C.M., Su, S.J., Xu, M., Wu, H.B. and Cao, Y., Nat. Photon., 2012, 6:591
       

    4. [4]

      You, J.B., Dou, L.T., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C.C., Gao, J., Li, G. and Yang, Y., Nat. Commun., 2013, 4:1446  doi: 10.1038/ncomms2411

    5. [5]

      Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H. and Yan, H., Nat. Commun., 2014, 5:5293  doi: 10.1038/ncomms6293

    6. [6]

      Liao, S.H., Jhuo, H.J., Yeh, P.N., Cheng, Y.S., Li, Y.L., Lee, Y.H., Sharma, S. and Chen, S.A., Sci. Rep., 2014, 4:6813  doi: 10.1038/srep06813

    7. [7]

      Jung, J.W., Liu, F., Russell, T.P. and Jo, W.H., Energy Environ. Sci., 2012, 5:6857  doi: 10.1039/c2ee21149a

    8. [8]

      Huang, J., Carpenter, J.H., Li, C.Z., Yu, J.S., Ade, H. and Jen, A.K.Y., Adv. Mater., 2016, 28:967  doi: 10.1002/adma.v28.5

    9. [9]

      Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W. and Yan, H., Nat. Energy, 2016, 1:15027  doi: 10.1038/nenergy.2015.27

    10. [10]

      Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q. and Hou, J., Sci. China Chem., 2015, 58:248  doi: 10.1007/s11426-014-5273-x

    11. [11]

      Lee, J.U., Jung, J.W., Jo, J.W. and Jo, W.H., J. Mater. Chem., 2012, 22:24265  doi: 10.1039/c2jm33645f

    12. [12]

      Eftaiha, A., Sun, J., Hill, I.G. and Welch, G.C., J. Mater. Chem. A, 2014, 2:1201  doi: 10.1039/C3TA14236A

    13. [13]

      Facchetti, A., Mater. Today, 2013, 16:123  doi: 10.1016/j.mattod.2013.04.005

    14. [14]

      Hwang, Y.J., Courtright, B.A.E., Ferreira, A.S., Tolbert, S.H. and Jenekhe, S.A., Adv. Mater., 2015, 27:4578  doi: 10.1002/adma.v27.31

    15. [15]

      Lee, C., Kang, H., Lee, W., Kim, T., Kim, K.H., Woo, H.Y., Wang, C. and Kim, B.J., Adv. Mater., 2015, 27:2466  doi: 10.1002/adma.201405226

    16. [16]

      Mori, D., Benten, H., Okada, I., Ohkita, H. and Ito, S., Energy Environ. Sci., 2014, 7:2939  doi: 10.1039/C4EE01326C

    17. [17]

      Diao, Y., Zhou, Y., Kurosawa, T., Shaw, L., Wang, C., Park, S., Guo, Y., Reinspach, J.A., Gu, K., Gu, X., Tee, B.C.K., Pang, C., Yan, H., Zhao, D., Toney, M.F., Mannsfeld, S.C.B. and Bao, Z., Nat. Commun., 2015, 6:7955  doi: 10.1038/ncomms8955

    18. [18]

      Zhou, E., Cong, J., Zhao, M., Zhang, L., Hashimoto, K. and Tajima, K., Chem. Commun., 2012, 48:5283  doi: 10.1039/c2cc31752d

    19. [19]

      Zhou, E., Cong, J., Hashimoto, K. and Tajima, K., Adv. Mater., 2013, 25:6991  doi: 10.1002/adma.v25.48

    20. [20]

      Gao, Y., Xiao, B., Izawa, S., Huang, J., Tajima, K., Zeng, Q. and Zhou, E., J. Mater. Chem. A, 2015, 3:22325  doi: 10.1039/C5TA06612C

    21. [21]

      Wang, X., Huang, J., Tajima, K., Xiao, B. and Zhou, E., Mater. Today Commun., 2015, 4:16  doi: 10.1016/j.mtcomm.2015.05.002

    22. [22]

      Zhou, E., Nakano, M., Izawa, S., Cong, J., Osaka, I., Takimiya, K. and Tajima, K., ACS Macro Lett., 2014, 3:872  doi: 10.1021/mz5004272

    23. [23]

      Nakano, K., Nakano, M., Xiao, B., Zhou, E., Suzuki, K., Osaka, I., Takimiya, K. and Tajima, K., Macromolecules, 2016, 49:1752  doi: 10.1021/acs.macromol.5b02658

    24. [24]

      Zhou, N., Dudnik, A.S., Li, T.I.N.G., Manley, E.F., Aldrich, T.J., Guo, P., Liao, H.C., Chen, Z., Chen, L.X., Chang, R.P.H., Facchetti, A., Olvera de la Cruz, M. and Marks, T, J., J. Am. Chem. Soc., 2016, 138:1240  doi: 10.1021/jacs.5b10735

    25. [25]

      Mori, D., Benten, H., Okada, I., Ohkita, H. and Ito, S., Adv. Energy Mater., 2014, 4:1301006  doi: 10.1002/aenm.201301006

    26. [26]

      Jung, J.W., Jo, J.W., Chueh, C.C., Liu, F., Jo, W.H., Russell, T.P. and Jen, A.K.Y., Adv. Mater., 2015, 27:3310  doi: 10.1002/adma.v27.21

    27. [27]

      Guo, Y., Li, Y., Awartani, O., Zhao, J., Han, H., Ade, H., Zhao, D. and Yan, H., Adv. Mater., 2016, 28:8483  doi: 10.1002/adma.v28.38

    28. [28]

      Kim, T., Kim, J.H., Kang, T.E., Lee, C., Kang, H., Shin, M., Wang, C., Ma, B., Jeong, U., Kim, T.S. and Kim, B.J., Nat. Commun., 2015, 6:8547  doi: 10.1038/ncomms9547

    29. [29]

      Gao, L., Zhang, Z., Xue, L., Min, J., Zhang, J., Wei, Z. and Li, Y., Adv. Mater., 2016, 28:1884  doi: 10.1002/adma.201504629

    30. [30]

      Li, S., Ye, L., Zhao, W., Zhang, S., Mukherjee, S., Ade, H. and Hou, J., Adv. Mater. 2016, DOI:10.1002/adma.201602776  doi: 10.1002/adma.201602776

    31. [31]

      Zhao, W., Qian, D., Zhang, S., Li, S., Inganäs, O., Gao, F. and Hou, J., Adv. Mater., 2016, 28:4734  doi: 10.1002/adma.v28.23

    32. [32]

      Schubert, M., Dolfen, D., Frisch, J., Roland, S., Steyrleuthner, R., Stiller, B., Chen, Z., Scherf, U., Koch, N., Facchetti, A. and Neher, D., Adv. Energy Mater., 2010, 2:369

    33. [33]

      Zhou, Y., Kurosawa, T., Ma, W., Guo, Y., Fang, L., Vandewal, K., Diao, Y., Wang, C., Yan, Q., Reinspach, J., Mei, J., Appleton, A.L., Koleilat, G.I., Gao, Y., Mannsfeld, S.C.B., Salleo, A., Ade, H., Zhao, D. and Bao, Z., Adv. Mater., 2014, 26:3767  doi: 10.1002/adma.v26.22

    34. [34]

      Zhou, Y., Yan, Q., Zheng, Y.Q., Wang, J.Y., Zhao, D. and Pei, J., J. Mater. Chem. A, 2013, 1:6609  doi: 10.1039/c3ta10864c

    35. [35]

      Zhang, S., Ye, L. and Hou, J., Adv. Energy Mater., 2016, 6:1502529  doi: 10.1002/aenm.201502529

    36. [36]

      Zhao, J., Li, Y., Lin, H., Liu, Y., Jiang, K., Mu, C., Ma, T., Lai, J.Y.L., Hu, H., Yu, D. and Yan, H., Energy Environ. Sci., 2015, 8:520  doi: 10.1039/C4EE02990A

    37. [37]

      Zhou, E., Cong, J., Wei, Q., Tajima, K., Yang, C. and Hashimoto, K., Angew. Chem. Int. Ed., 2011, 50:2799  doi: 10.1002/anie.201005408

    38. [38]

      Zhang, X., Zhan, C., Zhang, X. and Yao, J., Tetrahedron, 2013, 69:8155  doi: 10.1016/j.tet.2013.07.035

    39. [39]

      Earmme, T., Hwang, Y.J., Murari, N.M., Subramaniyan, S. and Jenekhe, S.A., J. Am. Chem. Soc., 2013, 135:14960  doi: 10.1021/ja4085429

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    2. [2]

      Jiawei Li Cheng Chen Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    5. [5]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    6. [6]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    7. [7]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    8. [8]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    9. [9]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    12. [12]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    13. [13]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    14. [14]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    15. [15]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    16. [16]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    17. [17]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    20. [20]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

Metrics
  • PDF Downloads(0)
  • Abstract views(783)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return