Improved Photovoltaic Performance from High Quality Perovskite Thin Film Grown with the Assistance of PC71BM
- Corresponding author: Hong-zheng Chen, hzchen@zju.edu.cn
Citation:
Jie-huan Chen, Shi-da Yang, Wen-qing Liu, Wei-fei Fu, Hong-zheng Chen. Improved Photovoltaic Performance from High Quality Perovskite Thin Film Grown with the Assistance of PC71BM[J]. Chinese Journal of Polymer Science,
;2017, 35(2): 309-316.
doi:
10.1007/s10118-017-1891-z
Chiang, C. and Wu, C., Nat. Photon., 2016, 10:196
doi: 10.1038/nphoton.2016.3
Yoon, H., Kang, S.M., Lee, J.K. and Choi, M., Energy Environ. Sci., 2016, 9:2262
doi: 10.1039/C6EE01037G
Huang, C., Fu, W., Li, C., Zhang, Z., Qiu, W., Shi, M., Heremans, P., Jen, A.K.Y. and Chen, H., J. Am. Chem. Soc., 2016, 138:2528
doi: 10.1021/jacs.6b00039
Zuo, L., Gu, Z., Ye, T., Fu, W., Wu, G., Li, H. and Chen, H., J. Am. Chem. Soc., 2015, 137:2674
doi: 10.1021/ja512518r
Liu, Z., Chen, Q., Hong, Z., Zhou, H., Xu, X., De, M.N., Sun, P., Zhao, Z., Cheng, Y. and Yang, Y., ACS Appl. Mat. Interfaces, 2016, 8:11076
doi: 10.1021/acsami.5b12123
Qiu, W., Buffière, M., Brammertz, G., Paetzold, U.W., Froyen, L., Heremans, P. and Cheyns, D., Org. Electron., 2015, 26:30
doi: 10.1016/j.orgel.2015.06.046
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., J. Am. Chem. Soc., 2009, 131:6050
doi: 10.1021/ja809598r
NREL chart, www.nrel.gov/ncpv/images/efficiency_chart.jpg
Cheng, N., Liu, P., Bai, S., Yu, Z., Liu, W., Guo, S. and Zhao, X., J. Power Sources, 2016, 319:111
doi: 10.1016/j.jpowsour.2016.04.062
Wu, C.G., Chiang, C.H., Tseng, Z.L., Nazeeruddin, M.K., Hagfeldt, A. and Graetzel, M., Energy Environ. Sci., 2015, 8:2725
doi: 10.1039/C5EE00645G
Xiao, Z., Wang, D., Dong, Q., Wang, Q., Wei, W., Dai, J., Zeng, X. and Huang, J., Energy Environ. Sci., 2016, 9:867
doi: 10.1039/C6EE00183A
Yang, Z., Yang, L., Wu, G., Wang, M. and Chen, H., Acta Chimica Sinica (in Chinese), 2011, 69:627
Huang, J., Gu, Z., Zuo, L., Ye, T. and Chen, H., Sol. Energy, 2016, 133:331
doi: 10.1016/j.solener.2016.04.017
Fu, W., Yan, J., Zhang, Z., Ye, T., Liu, Y., Wu, J., Yao, J., Li, C., Li, H. and Chen, H., Sol. Energy Meter. Sol. Cells, 2016, 155:331
doi: 10.1016/j.solmat.2016.06.037
Li, Y., Sci. China Chem., 2015, 58:830
Liu, J., Gao, C., He, X., Ye, Q., Ouyang, L., Zhuang, D., Liao, C., Mei, J. and Lau, W., ACS Appl. Mat. Interfaces, 2015, 7:24008
doi: 10.1021/acsami.5b06780
Zhu, W., Bao, C., Lv, B., Li, F., Yi, Y., Wang, Y., Yang, J., Wang, X., Yu, T. and Zou, Z., J. Mater. Chem. A, 2016, 4:12535
doi: 10.1039/C6TA04332A
Ye, S., Rao, H., Yan, W., Li, Y., Sun, W., Peng, H., Liu, Z., Bian, Z., Li, Y. and Huang, C., Adv. Mater., 2016, DOI:10.1002/adma.201603850
doi: 10.1002/adma.201603850
Pan, J., Mu, C., Li, Q., Li, W., Ma, D. and Xu, D., Adv. Mater., 2016, 28:8309
doi: 10.1002/adma.v28.37
Li, X., Bi, D., Yi, C., Decoppet, J.D., Luo, J. Zakeeruddin, S.M., Hagfeldt, A. and Gratzel, M., Science, 2016, 353:58
doi: 10.1126/science.aaf8060
Wang, K., Shi, Y., Li, B., Zhao, L., Wang, W., Wang, X., Bai, X., Wang, S., Hao, C. and Ma, T., Adv. Mater., 2016, 28:1891
doi: 10.1002/adma.201505241
Liu, D., Yang, J., and Kelly, T.L., J. Am. Chem. Soc., 2014, 136:17116
doi: 10.1021/ja508758k
Shi, J., Dong, J., Lv, S., Xu, Y., Zhu, L., Xiao, J., Xu, X., Wu, H., Li, D., Luo, Y. and Meng, Q., Appl. Phys. Lett., 2014, 104:0639016
Gu, Z., Chen, F., Zhang, X., Liu, Y., Fan, C., Wu, G., Li, H. and Chen, H., Sol. Energy Mater. Sol. Cells, 2015, 140:396
doi: 10.1016/j.solmat.2015.04.015
Wang, L., Fu, W., Gu, Z., Fan, C., Yang, X., Li, H. and Chen, H., J. Mater. Chem. C, 2014, 2:9087
doi: 10.1039/C4TC01875C
Yu, Z., Fu, W., Liu, W., Zhang, Z., Liu, Y., Yan, J., Ye, T., Yang, W., Li, H. and Chen, H., Chinese Chem. Lett., 2016, DOI:10.1016/j.cclet.2016.06.021
doi: 10.1016/j.cclet.2016.06.021
Li, C., Li, Y., Xing, Y., Zhang, Z., Zhang, X., Li, Z., Shi, Y., Ma, T., Ma, R., Wang, K. and Wei, J., ACS Appl. Mat. Interfaces, 2015, 7:15117
doi: 10.1021/acsami.5b01959
Shi, Y., Hou, K., Wang, Y., Wang, K., Ren, H., Pang, M., Chen, F. and Zhang, S., J. Mater. Chem. A, 2016, 4:5415
doi: 10.1039/C6TA00976J
Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y. and Spiccia, L., Angew. Chem. Int. Ed., 2014, 53:9898
doi: 10.1002/anie.201405334
Kang, R., Yeo, J., Lee, H.J., Lee, S., Kang, M., Myoung, N., Yim, S.Y., Oh, S.H. and Kim, D.Y., Nano Energy, 2016, 27:175
doi: 10.1016/j.nanoen.2016.06.052
Shao, Y., Xiao, Z., Bi, C., Yuan, Y. and Huang, J., Nat. Commun., 2014, 5:5784
doi: 10.1038/ncomms6784
Qin, R., Jiang, Y., Zhang, H., Zhang, K., Zhang, Q. and Chang, F., Chinese J. Polym. Sci., 2015, 33:490
doi: 10.1007/s10118-015-1603-5
Liao, X., Wang, J., Chen, S., Chen, L. and Chen, Y., Chinese J. Polym. Sci., 2016, 34:491
doi: 10.1007/s10118-016-1761-0
Wu, Y., Yang, X., Chen, W., Yue, Y., Cai, M., Xie, F., Bi, E., Islam, A. and Han, L., Nat. Energy, 2016, 1:16148
doi: 10.1038/nenergy.2016.148
Bi, D., Yi, C., Luo, J., Décoppet, J., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A. and Grätzel, M., Nat. Energy, 2016, 1:16142
doi: 10.1038/nenergy.2016.142
Rong, Y, Venkatesan, S., Guo, R., Wang, Y., Bao, J., Li, W., Fan, Z. and Yao, Y., Nanoscale, 2016, 8:12892
doi: 10.1039/C6NR00488A
Nan, Y., Li, J., Fu, W., Qiu, W., Zuo, L., Pan, H., Yan, Q., Chen, X. and Chen, H., Chinese J. Polym. Sci., 2013, 31:879
doi: 10.1007/s10118-013-1274-z
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L. and Huang, J., Science, 2015, 347:967
doi: 10.1126/science.aaa5760
Lee, J., Kim, H. and Park, N., Acc. Chem. Res., 2016, 49:311
doi: 10.1021/acs.accounts.5b00440
Bi, D., Tress, W., Dar, M.I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Correa Baena, J.P., Decoppet, J.D., Zakeeruddin, S.M., Nazeeruddin, M.K., Gra Tzel, M. and Hagfeldt, A., Sci. Adv., 2016, 2:1501170
doi: 10.1126/sciadv.1501170
Chang, J., Zhu, H., Li, B., Isikgor, F.H., Hao, Y., Xu, Q. and Ouyang, J., J. Mater. Chem. A, 2016, 4:887
doi: 10.1039/C5TA08398B
Yarui Li , Huangjie Lu , Yingzhe Du , Jie Qiu , Peng Lin , Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Jindan Zhang , Zhenghong Li , Chi Li , Mengqi Zhu , Shicheng Tang , Kaicong Cai , Zhibin Cheng , Chulong Liu , Shengchang Xiang , Zhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164