Citation: Shi-fan Wang, Ya-nan Liu, Jie Yang, You-tian Tao, Yan Guo, Xu-dong Cao, Zhi-guo Zhang, Yong-fang Li, Wei Huang. Orthogonal Solubility in Fully Conjugated Donor-Acceptor Block Copolymers: Compatibilizers for Polymer/Fullerene Bulk-Heterojunction Solar Cells[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 207-218. doi: 10.1007/s10118-017-1889-6 shu

Orthogonal Solubility in Fully Conjugated Donor-Acceptor Block Copolymers: Compatibilizers for Polymer/Fullerene Bulk-Heterojunction Solar Cells

  • Corresponding author: You-tian Tao, iamyttao@njtech.edu.cn Zhi-guo Zhang, zgzhangwhu@iccas.ac.cn Wei Huang, iamwhuang@njtech.edu.cn
  • Received Date: 18 July 2016
    Revised Date: 14 August 2016
    Accepted Date: 15 August 2016

    Fund Project: the National Natural Science Foundation of China 21304047Natural Science Foundation of Jiangsu Province 13KJB430017Research Fund for the Doctoral Program of Higher Education 20133221120015

  • Donor-acceptor (D-A) type fully conjugated block copolymer systems have been rarely reported due to the challenges in synthetic approaches to prepare well-defined low-polydispersity products. In this work, fully conjugated block copolymers are synthesized in a one-pot reaction through Stille coupling polycondensation, by utilizing the end-functional polymer copolymerization method. End-functional P3HT are copolymerized with AA (2, 7-dibromo-9-(heptadecan-9-yl)-9H-carbazole) and BB (4, 7-bis (5-(trimethylstannyl) thiophen-2-yl) benzo[c] [1, 2, 5]thiadiazole, TBT) type monomers, respectively. The orthogonal solubility between the very soluble P3HT donor and the insoluble PCDTBT acceptor block improves the purity of block copolymers as well as distinct nano-scale phase-separation compared with other reports on miscibility of donor and acceptor polymer block. Further purification via preparative GPC is carried out to remove the excess of unreacted P3HT and free PCDTBT as well as to achieve low polydispersity of block copolymers. The chemical structure of the P3HT-b-PCDTBT block copolymers are verified via 1H-NMR, and further confirmed by FTIR spectra. The block copolymer shows broad absorption and moderate optical band gap of 1.8 eV. Furthermore, the fully conjugated block copolymer films exhibit significant fine structures, much smoother film morphology compared to P3HT/PCDTBT polymer blends. By adding a small amount of block copolymer P3HT-b-PCDTBT as a compatibilizer into the bulk-heterojunction of P3HT:PC61BM blends, polymer solar cells with an 8% increase of short circuit current (Jsc) and 10% increase of power conversion efficiency (PCE) are achieved owing to the improvement of the active-layer film morphology. To the best of our knowledge, this is the first report on donor-acceptor type fully conjugated block copolymer as an effective ternary additive in polymer:fullerene bulk heterojunction solar cells.
  • 加载中
    1. [1]

      Yu, G., Gao J., Hummelen, J.C., Wudl, F. and Heeger, A.J., Science, 1995, 270:1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      M. Halls, J.J., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C. and Holmes, A.B., Nature, 1995, 376:498  doi: 10.1038/376498a0

    3. [3]

      You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C.C., Gao, J., Li, G. and Yang, Y., Nat. Commun., 2013, 4:1446  doi: 10.1038/ncomms2411

    4. [4]

      He, Z., Zhong, C., Su, S., Xu, M., Wu, H. and Cao, Y., Nat. Photon., 2012, 6:593  doi: 10.1038/nphoton.2012.190

    5. [5]

      Keshtov, M.L., Marochkin, D.V., Fu, Y., Xie, Z., Geng, Y., Kochurov, V.S. and Khokhlov, A.R. Chinese J. Polym. Sci., 2014, 32:844  doi: 10.1007/s10118-014-1458-1

    6. [6]

      Qian, M., Zhang, R., Hao, J., Zhang, W., Zhang, Q., Wang, J., Tao, Y., Chen, S., Fang, J. and Huang, W., Adv. Mater., 2015, 27:3546  doi: 10.1002/adma.v27.23

    7. [7]

      Wang, S., Yang, J., Zhang, Z., Hu, Y., Cao, X., Li, H., Tao, Y., Li, Y. and Huang, W., RSC Adv., 2015, 5:68192  doi: 10.1039/C5RA07383A

    8. [8]

      Slota, J.E., He, X. and Huck, W.T.S., Nano Today, 2010, 5:231  doi: 10.1016/j.nantod.2010.05.004

    9. [9]

      Etxebarria, I., Ajuria, J. and Pacios, R., Org. Electron., 2015, 19:34  doi: 10.1016/j.orgel.2015.01.014

    10. [10]

      Chan, S., Lai, C., Chen, H., Ting, C. And Chen, C.P., Macromolecules, 2011, 44:8886  doi: 10.1021/ma201425d

    11. [11]

      Riede, M.K., Sylvester-Hvid, K.O., Glatthaar, M., Keegan, N., Ziegler, T., Zimmermann, B., Niggemann, M., Liehr, A.W., Willeke, G. and Gombert, A., Prog. Photovolt:Res. Appl., 2008, 16:561  doi: 10.1002/pip.v16:7

    12. [12]

      Mulherin, R.C., Jung, S., Huettner, S., Johnson, K., Kohn, P., Sommer, M., Allard, S., Scherf, U. and Greenham, N.C., Nano Lett., 2011, 11:4846  doi: 10.1021/nl202691n

    13. [13]

      Chang, L., Lademann, H.W.A., Bonekamp, J.B., Meerholz, K. and Moulé, A.J., Adv. Funct. Mater., 2011, 21:1779  doi: 10.1002/adfm.201002372

    14. [14]

      Pavlopoulou, E., Kim, C.S., Lee, S.S., Chen, Z., Facchetti, A., Toney, M.F. and Loo, Y., Chem. Mater., 2014, 26:5020  doi: 10.1021/cm502112z

    15. [15]

      Lou, S.J., Szarko, J.M., Xu, T., Yu, L., Marks, T.J. and Chen, L.X., J. Am. Chem. Soc., 2011, 133:20661  doi: 10.1021/ja2085564

    16. [16]

      Padinger, F., Rittberger, R.S. and Sariciftci, N.S., Adv. Funct. Mater., 2003, 13:85  doi: 10.1002/adfm.200390011

    17. [17]

      Saeki, A., Yoshikawa, S., Tsuji, M., Koizumi, Y., Ide, M., Vijayakumar, C. and Seki, S., J. Am. Chem. Soc., 2012, 134:19035  doi: 10.1021/ja309524f

    18. [18]

      Robb, M.J., Ku, S. and Hawker, C.J., Adv. Mater., 2013, 25:5686  doi: 10.1002/adma.v25.40

    19. [19]

      Lai, Y., Ohshimizu, K., Takahashi, A., Hsu, J., Higashihara, T., Ueda, M. And Chen, W., J. Polym. Sci., Part A:Polym. Chem., 2011, 49:2577

    20. [20]

      Wang, J. and Higashihara, T., Polym. Chem., 2013, 4:5518  doi: 10.1039/c3py00979c

    21. [21]

      Scherf, U., Gutacker, A. and Koenen, N., Acc. Chem. Res., 2008, 41:1086  doi: 10.1021/ar7002539

    22. [22]

      Lee, Y. and Gomez, E.D., Macromolecules, 2015, 48:7385  doi: 10.1021/acs.macromol.5b00112

    23. [23]

      Wang, S., Guo, Y., Yang, J., Tao, Y. and Huang, W., Chin. J. Chem., 2015, 33:865  doi: 10.1002/cjoc.201500257

    24. [24]

      Ku, S.Y., Brady, M.A., Treat, N.D., Cochran, J.E., Robb, M.J., Kramer, E.J., Chabinyc, M.L. and Hawker, C.J., J. Am. Chem. Soc., 2012, 134:16040  doi: 10.1021/ja307431k

    25. [25]

      Guo, C., Lin, Y.H., Witman, M.D., Smith, K.A., Wang, C., Hexemer, A., Strzalka, J., Gomez, E.D. and Verduzco, R., Nano Lett., 2013, 13:2957  doi: 10.1021/nl401420s

    26. [26]

      Bolag, A., Hayashi, H., Charbonnaz, P., Sakai N. and Matile, S., Chemistry Open, 2013, 2:55

    27. [27]

      Jea Uk, L., Jae Woong, J., Todd, E., Thomas, P.R. and Won Ho, J., Nanotechnology, 2010, 21:105201  doi: 10.1088/0957-4484/21/10/105201

    28. [28]

      Rajaram, S., Armstrong, P.B., Kim, B.J. and Fréchet, J.M.J., Chem. Mater., 2009, 21:1775  doi: 10.1021/cm900911x

    29. [29]

      Wang, S., Yang, Q., Tao, Y., Guo, Y., Yang, J., Liu, Y., Zhao, L., Xie, Z. and Huang, W., New J. Chem., 2016, 40:1825  doi: 10.1039/C5NJ02636A

    30. [30]

      Mok, W., Lin, Y., Yager, K.G., Mohite, A.D., Nie, W., Darling, S.B., Lee, Y., Gomez, E., Gosztola, D., Schaller, R.D. and Verduzco, R., Adv. Funct. Mater., 2015, 25:5578  doi: 10.1002/adfm.201502623

    31. [31]

      Nakabayashi, K. and Mori, H., Macromolecules, 2012, 45:9618  doi: 10.1021/ma302170e

    32. [32]

      Lin, Y.H., Smith, K.A., Kempf, C.N. and Verduzco, R., Polym. Chem., 2013, 4:229  doi: 10.1039/C2PY20830J

    33. [33]

      Bu, L.J., Guo, X.Y., Yu, B., Qu, Y., Xie, Z.Y., Yan, D.H., Geng, Y.H. and Wang, F.S., J. Am. Chem. Soc., 2009, 131:13242  doi: 10.1021/ja905980w

    34. [34]

      Gao, D., Hollinger, J. and Seferos, D.S., ACS Nano, 2012, 6:7114  doi: 10.1021/nn3021844

    35. [35]

      Kozycz, L.M., Gao, D., Hollinger, J. and Seferos, D.S., Macromolecules, 2012, 45:5823  doi: 10.1021/ma3009349

    36. [36]

      Hollinger, J., Sun, J., Gao, D., Karl, D. and Seferos, D.S., Macromol. Rapid Commun., 2013, 34:437  doi: 10.1002/marc.v34.5

    37. [37]

      Chi, C., Chen, M., Liaw, D., Wu, H., Huang, Y. and Tai, Y., ACS Appl. Mater. Inter., 2014, 6:12119  doi: 10.1021/am501209t

    38. [38]

      Qu, J.F., Gao, B.R., Tian, H.K., Zhang, X.J., Wang, Y., Xie, Z.Y., Wang, H.Y., Geng, Y.H. and Wang, F.S., J. Mater. Chem. A, 2014, 2:3632  doi: 10.1039/c3ta14701k

    39. [39]

      Lombeck, F., Komber, H., Sepe, A.R., Friend, H. and Sommer, M., Macromolecules, 2015, 48:7851  doi: 10.1021/acs.macromol.5b01845

    40. [40]

      Salleo, A., Kline, R.J., DeLongchamp, D.M. and Chabinyc, M.L., Adv. Mater., 2010, 22:3812  doi: 10.1002/adma.200903712

    41. [41]

      Sirringhaus, H., Tessler, N. and Friend, R.H., Science, 1998, 280:1741.  doi: 10.1126/science.280.5370.1741

    42. [42]

      Duong, D.T., Phan, H., Hanifi, D., Jo, P.S., Nguyen, T.Q. and Salleo, A., Adv. Mater., 2014, 26:6069  doi: 10.1002/adma.201402015

    43. [43]

      Blouin, N., Michaud, A. and Leclerc, M., Adv. Mater., 2007, 19:2295  doi: 10.1002/(ISSN)1521-4095

    44. [44]

      He, Z., Zhong, C., Huang, X., Wong, W.Y., Wu, H., Chen, L., Su, S. and Cao, Y., Adv. Mater., 2011, 23:4636  doi: 10.1002/adma.201103006

    45. [45]

      Ashraf, R.S., Schroeder, B.C., Bronstein, H.A., Huang, Z., Thomas, S., Kline, R.J., Brabec, C.J., Rannou, P., Anthopoulos, T.D., Durrant, J.R. and McCulloch, I., Adv. Mater., 2013, 25:2029  doi: 10.1002/adma.201300027

    46. [46]

      Verswyvel, M., Steverlynck, J., Hadj Mohamed, S., Trabelsi, M., Champagne, B. and Koeckelberghs, G., Macromolecules, 2014, 47:4668  doi: 10.1021/ma500610p

    47. [47]

      Dhibi, O., Ltaief, A. and Bouazizi, A., Mater. Sci. Semicond. Process., 2014, 25:173  doi: 10.1016/j.mssp.2013.11.004

    48. [48]

      Guo, Y., Jiang, L., Ma, X., Hu, W. and Su, Z., Polym. Chem., 2013, 4:4308  doi: 10.1039/c3py00728f

    49. [49]

      Verduzco, R., Botiz, I., Pickel, D.L., Kilbey, S.M., Hong, K., Dimasi, E. and Darling, S.B., Macromolecules, 2011, 44:530  doi: 10.1021/ma102728z

  • 加载中
    1. [1]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    2. [2]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    3. [3]

      Jiawei Li Cheng Chen Mingyan Wu . Donor-acceptor type organic cocrystals for deep-red circularly polarized luminescence and two-photon excited emission. Chinese Journal of Structural Chemistry, 2025, 44(3): 100513-100513. doi: 10.1016/j.cjsc.2025.100513

    4. [4]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    5. [5]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    6. [6]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    7. [7]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    8. [8]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    9. [9]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    10. [10]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    11. [11]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    12. [12]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    13. [13]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    14. [14]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    15. [15]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    16. [16]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    17. [17]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    18. [18]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    19. [19]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    20. [20]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

Metrics
  • PDF Downloads(0)
  • Abstract views(887)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return