Citation: Kai Zhang, Xiao-yu Liu, Bo-wei Xu, Yong Cui, Ming-liang Sun, Jian-hui Hou. High-performance Fullerene-free Polymer Solar Cells with Solution-processed Conjugated Polymers as Anode Interfacial Layer[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 219-229. doi: 10.1007/s10118-017-1888-7 shu

High-performance Fullerene-free Polymer Solar Cells with Solution-processed Conjugated Polymers as Anode Interfacial Layer

  • Corresponding author: Bo-wei Xu, xubowei2004@iccas.ac.cn Ming-liang Sun, mlsun@ouc.edu.cn Jian-hui Hou, hjhzlz@iccas.ac.cn
  • Received Date: 9 August 2016
    Revised Date: 13 September 2016
    Accepted Date: 14 September 2016

    Fund Project: the National Natural Science Foundation of China 21274134

  • A series of conjugated polymers based on PFS derivatives with π-conjugated 5-(9H-fluoren-2-yl)-2, 2'-bithiophene (fluorene-alt-bithiophene) backbones, namely PFS-3C, PFS-4C and PFS-6C, were synthesized for their use as the anode interfacial layers (AILs) in the efficient fullerene-free polymer solar cells (PSCs). Alkyl sulfonate pendants with different lengths of alkyl side chains were introduced in the three polymers in order to investigate the effect of the alkyl chain length on the anode modification. The obtained three polymers exhibited similar absorption bands and energy levels, indicating that changing the length of the alkyl side chains did not affect the optoelectronic properties of the conjugated polymers. Based on the PBDB-T:ITIC active layer, we fabricated the fullerene-free PSCs using the three polymers as the AILs. The superior performance of the fullerene-free PSC device was achieved when PFS-4C was used as the AIL, showing a power conversion efficiency (PCE) of 10.54%. The high performance of the PFS-4C-modified device could be ascribed to the high transmittance, suitable work-function (WF) and smooth surface of PFS-4C. To the best of our knowledge, the PCE obtained in the PFS-4C-modified device is among the highest PCE values in the fullerene-free PSCs at present. These results demonstrate that the PFS derivatives are promising candidates in serving as the AIL materials for high-performance fullerene-free PSCs.
  • 加载中
    1. [1]

      Nielsen, C., Holliday, S., Chen, H., Cryer, S.J. and McCulloch, I., Acc. Chem. Res., 2015, 48:2803  doi: 10.1021/acs.accounts.5b00199

    2. [2]

      Lin, Y., He, Q., Zhao, F., Huo, L., Mai, J., Lu, X., Su, C., Li, T., Wang, J., Zhu, J., Sun Y., Wang, C. and Zhan, X., J. Am. Chem. Soc., 2016, 138:2973  doi: 10.1021/jacs.6b00853

    3. [3]

      Gao, L., Zhang, Z., Xue, L., Min, J., Zhang, J., Wei, Z. and Li, Y., Adv. Mater., 2016, 28:1884  doi: 10.1002/adma.201504629

    4. [4]

      Lin, Y., Wang, J., Zhang, Z., Bai, H., Li, Y., Zhu, D. and Zhan, X., Adv. Mater., 2015, 27:1170  doi: 10.1002/adma.201404317

    5. [5]

      Meng, D., Sun, D., Zhong, C., Liu, T., Fan, B., Huo, L., Li, Y., Jiang, W., Choi, H., Kim, T., Kim, J.Y., Sun, Y., Wang, Z. and Heeger, A.J., J. Am. Chem. Soc., 2016, 138:375  doi: 10.1021/jacs.5b11149

    6. [6]

      Gao, L., Zhang, Z., Bin, H., Xue, L., Yang, Y., Wang, C., Liu, F., Russell, T.P. and Li, Y., Adv. Mater., 2016, DOI:10.1002/adma.201601595  doi: 10.1002/adma.201601595

    7. [7]

      Ye, L., Jiao, X., Zhou, M., Zhang, S., Yao, H., Zhao, W., Xia, A., Ade, H. and Hou, J., Adv. Mater., 2015, 27:6046  doi: 10.1002/adma.201503218

    8. [8]

      Shi, S., Yuan, J., Ding, G., Ford, M., Lu, K., Shi, G., Sun, J., Ling, X., Li, Y. and Ma, W., Adv. Funct. Mater., 2016, DOI:10.1002/adfm.201601037  doi: 10.1002/adfm.201601037

    9. [9]

      Zhang, S., Qin, Y., Uddin, M, A., Jang, B., Zhao, W., Liu, D., Woo, H.Y. and Hou, J., Macromolecules, 2016, 49:2993  doi: 10.1021/acs.macromol.6b00248

    10. [10]

      Yao, H., Chen, Y., Qin, Y., Yu, R., Cui, Y., Yang, B., Li, S., Zhang, K. and Hou, J., Adv. Mater., 2016, DOI:10.1002/adma.201602642  doi: 10.1002/adma.201602642

    11. [11]

      Zhao, W., Qian, D., Zhang, S., Li, S., Inganäs, O., Gao, F. and Hou, J., Adv. Mater., 2016, 28:4734  doi: 10.1002/adma.v28.23

    12. [12]

      Wu, Z., Sun, C., Dong, S., Jiang, X., Wu, S., Wu, H., Yip, H.L., Huang, F. and Cao, Y., J. Am. Chem. Soc., 2016, 138:2004  doi: 10.1021/jacs.5b12664

    13. [13]

      Wu, H., Huang, F., Mo, T., Yang, W., Wang, D., Peng, J. and Cao, Y., Adv. Mater., 2004, 16:1826

    14. [14]

      Liu, S., Zhang, K., Lu, J., Zhang, J., Yip, H.L., Huang, F. and Cao, Y., J. Am. Chem. Soc., 2013, 135:15326  doi: 10.1021/ja408363c

    15. [15]

      Zhou, H., Zhang, Y., Mai, C.K., Collins, S.D., Bazan, G.C., Nguyen, T. and Heeger, A.J., Adv. Mater., 2015, 27:1767  doi: 10.1002/adma.201404220

    16. [16]

      Mai, C.K., Schlitz, R.A., Su, G.M., Spitzer, D., Wang, X., Fronk, S.L., Cahill, D.G., Chabinyc, M.L. and Bazan, G.C., J. Am. Chem. Soc., 2014, 136:13478  doi: 10.1021/ja504284r

    17. [17]

      Lee, B.H., Lee, J.H., Jeong, S.Y., Park, S.B., Lee, S.H. and Lee, K., Adv. Energy Mater., 2015, 5:1401653  doi: 10.1002/aenm.201401653

    18. [18]

      Yao, K., Chen, L., Chen, X. and Chen, Y., Chem. Mater., 2013, 25:897  doi: 10.1021/cm400297p

    19. [19]

      Park, H. and Kong, J., Adv. Energy Mater., 2014, 4:1301280  doi: 10.1002/aenm.201301280

    20. [20]

      Yuan, T., Yang, D., Zhu, X., Zhou, L., Zhang, J., Tu, G. and Li, C., RSC Adv., 2014, 4:50988  doi: 10.1039/C4RA08904A

    21. [21]

      Huang, F., Wang, X., Wang, D., Yang, W. and Cao, Y., Polymer, 2005, 46:12010  doi: 10.1016/j.polymer.2005.10.034

    22. [22]

      Zhou, H., Zhang, Y., Mai, C.K., Seifter, J., Nguyen, T., Bazan, G.C. and Heeger, A.J., ACS Nano, 2015, 9:371  doi: 10.1021/nn505378m

    23. [23]

      Mai, C.K., Zhou, H., Zhang, Y., Henson, Z.B., Nguyen, T.Q., Heeger, A.J. and Bazan, G.C., Angew. Chem. Int. Ed., 2013, 52:12874  doi: 10.1002/anie.201307667

    24. [24]

      Zhou, H., Zhang, Y., Mai, C.K., Collins, S.D., Nguyen, T.Q., Bazan, G.C. and Heeger, A.J., Adv. Mater., 2014, 26:780  doi: 10.1002/adma.201302845

    25. [25]

      Xu, B., Zheng, Z., Zhao, K. and Hou, J., Adv. Mater., 2016, 28:434  doi: 10.1002/adma.v28.3

    26. [26]

      Hannedouche, J., Clarkson, G. and Wills, M., J. Am. Chem. Soc., 2004, 126:986  doi: 10.1021/ja0392768

    27. [27]

      Stay, D. and Lonergan, M.C., Macromolecules, 2013, 46:4361  doi: 10.1021/ma4004693

    28. [28]

      Li, Y., Cao, Y., Gao, J., Wang, D., Yu, G. and Heeger, A.J., Synthetic Met., 1999, 99:243  doi: 10.1016/S0379-6779(99)00007-7

    29. [29]

      Wang, F., Xu, Q., Tan, Z., Li, L., Li, S., Hou, X., Sun, G., Tu, X., Hou, J. and Li, Y., J. Mater. Chem. A, 2014, 2:1318  doi: 10.1039/C3TA13680A

    30. [30]

      Qian, D., Ye, L., Zhang, M., Liang, Y., Li, L., Huang, Y., Guo, X., Zhang, S., Tan, Z. and Hou, J., Macromolecules, 2012, 45:9611  doi: 10.1021/ma301900h

    31. [31]

      Meng, B., Wang, Z., Ma, W., Xie, Z., Liu, J. and Wang, L., Adv. Funct. Mater., 2016, 26:226  doi: 10.1002/adfm.v26.2

    32. [32]

      Xu, Q., Wang, F., Tan, Z., Li, L., Li, S., Hou, X., Sun, G., Tu, X., Hou, J. and Li, Y., ACS Appl. Mater. Interfaces, 2013, 5:10658  doi: 10.1021/am402745t

  • 加载中
    1. [1]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    5. [5]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    6. [6]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    7. [7]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    8. [8]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    9. [9]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    10. [10]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    13. [13]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    14. [14]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    15. [15]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    16. [16]

      Yuhuan MengLong ZhangLequan WangJunming KangHongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025

    17. [17]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    18. [18]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

Metrics
  • PDF Downloads(0)
  • Abstract views(846)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return