Citation: Amjad Islam, Zhi-yang Liu, Rui-xiang Peng, Wei-gang Jiang, Tao Lei, Wang Li, Lei Zhang, Rong-juan Yang, Guan Qian, Zi-yi Ge. Furan-containing Conjugated Polymers for Organic Solar Cells[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 171-183. doi: 10.1007/s10118-017-1886-9 shu

Furan-containing Conjugated Polymers for Organic Solar Cells

  • Corresponding author: Zi-yi Ge, geziyi@nimte.ac.cn
  • Received Date: 23 July 2016
    Revised Date: 19 August 2016
    Accepted Date: 21 August 2016

    Fund Project: CAS Interdisciplinary Innovation Team and Ningbo Municipal Science and Technology Innovative Research Team 2015B11002the National Natural Science Foundation of China 51273209CAS Interdisciplinary Innovation Team and Ningbo Municipal Science and Technology Innovative Research Team 2016B10005the National Natural Science Foundation of China 51411140244Ningbo Natural Science Foundation 2016A610277Zhejiang Provincial Natural Science Foundation of China LR16B040002the National Natural Science Foundation of China 21574144

  • Development of organic semiconductors is one of the most intriguing and productive topics in material science and engineering. Many efforts have been made on the synthesis of aromatic building blocks such as benzene, thiophene and pyrrole due to the facile preparation accompanied by the intrinsic environmental stability and relatively efficient properties of the resulting polymers. In the past, furan has been less explored in this field because of its high oxidation potential. Recently, furan has attracted obsession due to its weaker aromaticity, the greater solubilities of furan-containing π-conjugated polymers relative to other benzenoid systems and the accessibility of furan-based starting materials from renewable resources. This review elaborates the advancements of organic photovoltaic polymers containing furan building blocks. The uniqueness and advantages of furan-containing building blocks in semiconducting materials are also discussed.
  • 加载中
    1. [1]

      Sun, S.S. and Dalton, L.R., "Introduction to organic electronic and optoelectronic materials and devices", CRC Press, New York, 2008

    2. [2]

      Forrest, S.R., Nature, 2004, 428:911  doi: 10.1038/nature02498

    3. [3]

      Li, G., Zhu, R. and Yang, Y., Nat. Photon., 2012, 6:153  doi: 10.1038/nphoton.2012.11

    4. [4]

      Zhao, Y., Guo, Y. and Liu, Y., Adv. Mater., 2013, 25:5372  doi: 10.1002/adma.201302315

    5. [5]

      Ouyang, X., Peng, X., Ai, L., Zhang, X. and Ge, Z., Nat. Photon., 2015, 9:520  doi: 10.1038/nphoton.2015.126

    6. [6]

      Lee, J., Han, A.R., Yu, H., Shin, T.J., Yang, C. and Oh, J.H., J. Am. Chem. Soc., 2013, 135:9540  doi: 10.1021/ja403949g

    7. [7]

      Dou, L., You, J., Hong, Z., Xu, Z., Li, G., Street, R.A. and Yang, Y., Adv. Mater., 2013, 25:6642  doi: 10.1002/adma.v25.46

    8. [8]

      Szarko, J.M., Rolczynski, B.S., Lou, S.J., Xu, T., Strzalka, J., Marks, T.J., Yu, L. and Chen, L.X., Adv. Funct. Mater., 2014, 24:10  doi: 10.1002/adfm.v24.1

    9. [9]

      Letheby, H., J. Chem. Soc., 1862, 15:161  doi: 10.1039/JS8621500161

    10. [10]

      De Surville, R., Jozefowicz, M., Yu, L.T., Perichon, J. and Buvet, R., Electrochim. Acta, 1968, 13:1451  doi: 10.1016/0013-4686(68)80071-4

    11. [11]

      Shirakawa, H., Louis, E.A., MacDiarmid, A.G., Chiang, C.K. and Heeger, A.J., J. Chem. Soc., Chem. Commun., 1977, 578

    12. [12]

      Gorman, C.B., Ginsburg, E.J. and Grubbs, R.H., J. Am. Chem. Soc., 1993, 115:1397  doi: 10.1021/ja00057a024

    13. [13]

      Weinberger, B.R., Akhtar, M. and Gau, S.C., Synth. Met., 1982, 4:187  doi: 10.1016/0379-6779(82)90012-1

    14. [14]

      Diaz, A.F., Kanazawa, K.K. and Gardini, G.P., J. Chem. Soc., Chem. Commun., 1979, 635
       

    15. [15]

      Diaz, A.F., Vasquez, J.M.V. and Duran, A.M., IBM J. Res. Dev., 1981, 25:42  doi: 10.1147/rd.251.0042

    16. [16]

      Yamamoto, T., Sanechika, K. and Yamamoto, A., J. Polym. Sci., Polym. Lett. Ed., 1980, 18:9  doi: 10.1002/pol.1980.130180103

    17. [17]

      Lin, J.W.P.and Dudek, L.P., J. Polym. Sci., Polym. Lett. Ed., 1980, 18:2869
       

    18. [18]

      Glenis, S., Tourillon, G. and Garnier, F., Thin Solid Films, 1986, 139:221  doi: 10.1016/0040-6090(86)90053-2

    19. [19]

      Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L. and Holmes, A.B., Nature, 1990, 347:539  doi: 10.1038/347539a0

    20. [20]

      Karg, S., Riess, W., Dyakonov, V. and Schwoerer, M., Synth. Met., 1993, 54:427  doi: 10.1016/0379-6779(93)91088-J

    21. [21]

      McCullough, R.D. and Lowe, R.D., J. Chem. Soc., Chem. Commun., 1992, 70
       

    22. [22]

      Campbell, I.H., Smith, D.L. and Ferraris, J.P., Appl. Phys. Lett., 1995, 66:30
       

    23. [23]

      Usta, H., Risko, C., Wang, Z., Huang, H., Deliomeroglu, M.K., Zhukhovitskiy, A., Facchetti, A. and Marks, T.J., J. Am. Chem. Soc., 2009, 131:5586  doi: 10.1021/ja809555c

    24. [24]

      Kularatne, R.S., Magurudeniya, H.D., Sista, P., Biewer, M.C. and Stefan, M.C., J. Polym. Sci., Part A:Polym. Chem., 2013, 51:743  doi: 10.1002/pola.26425

    25. [25]

      Takeda, Y., Andrew, T.L., Lobez, J.M., Mork, A.J. and Swager, T.M., Angew. Chem. Int. Ed., 2012, 51:9042  doi: 10.1002/anie.201204066

    26. [26]

      Hwang, Y.J., Murari, N.M. and Jenekhe, S.A., Polym. Chem., 2013, 4:3187  doi: 10.1039/c3py00325f

    27. [27]

      Sun, S.S. and Saricici, N.S., "Organic photovoltaics mechanisms, materials, and devices", CRC press, Boca Raton, FL, 2005

    28. [28]

      Moussalem, C., Segut, O., Gohier, F., Allain, M. and Fŕere, P., ACS Sustainable Chem. Eng., 2014, 2:1043  doi: 10.1021/sc500042u

    29. [29]

      Joule, J.A. and Mills, K., "Heterocyclic chemistry", Blackwell Publishing Ltd, West Sussex, UK, 2010

    30. [30]

      Sitthisa, S. and Resasco, D.E., Catal. Lett., 2011, 141:784  doi: 10.1007/s10562-011-0581-7

    31. [31]

      Ye, L., Zhang, S., Zhao, W., Yao, H. and Hou, J., Chem. Mater., 2014, 26:3603  doi: 10.1021/cm501513n

    32. [32]

      Miessler, G.L. and Tarr, D.A., "Inorganic chemistry", Prentice Hall, Upper Saddle River, USA, NJ, 2010

    33. [33]

      Zhou, H., Yang, L. and You, W., Macromolecules, 2012, 45:607  doi: 10.1021/ma201648t

    34. [34]

      Kumar, A., Bokria, J.G., Buyukmumcu, Z., Dey, T. and Sotzing, G.A., Macromolecules, 2008, 41:7098  doi: 10.1021/ma702773e

    35. [35]

      Li, H., Jiang, P., Yi, C., Li, C., Liu, S., Tan, S., Zhao, B., Braun, J., Meier, W., Wandlowski, T. and Decurtins, S., Macromolecules, 2010, 43:8058  doi: 10.1021/ma101693d

    36. [36]

      Woo, C.H., Beaujuge, P.M., Holcombe, T.W., Lee, O.P. and Fréchet, J.M.J., J. Am. Chem. Soc., 2010, 132:15547  doi: 10.1021/ja108115y

    37. [37]

      Bunz, H., Angew. Chem., Int. Ed., 2010, 49:5037  doi: 10.1002/anie.v49:30

    38. [38]

      Gidron, O., Dadvand, A., Sheynin, Y., Bendikov, M. and Perepichka, D., Chem. Commun., 2011, 47:1976  doi: 10.1039/C0CC04699J

    39. [39]

      Huo, L., Huang, Y., Fan, B., Guo, X., Jing, Y., Zhang, M., Li, Y. and Hou, J., Chem. Commun., 2012, 48:3318  doi: 10.1039/c2cc17708k

    40. [40]

      Sista, P., Huang, P., Gunathilake, S.S., Bhatt, M.P., Kularatne, R.S., Stefan, M.C. and Biewer M.C., J. Polym. Sci., Part A:Polym. Chem., 2012, 50:4316  doi: 10.1002/pola.v50.20

    41. [41]

      Li, H., Tang, P., Zhao, Y., Liu, S., Aeschi, Y., Deng, L., Braun, J., Zhao, B., Liu, Y., Tan, S., Meier, W. and Decurtins, S., J. Polym. Sci., Part A:Polym. Chem., 2012, 50:2935  doi: 10.1002/pola.26075

    42. [42]

      Wang, M., Li, C.H., Lv, A.F., Wang, Z.H. and Bo, Z.S., Macromolecules, 2012, 45:3017  doi: 10.1021/ma202752h

    43. [43]

      Tsuji, H., Mitsui, C., Ilies, L., Sato, Y. and Nakamura, E., J. Am. Chem. Soc., 2007, 129:11902  doi: 10.1021/ja074365w

    44. [44]

      Tsuji, H., Mitsui, C., Sato, Y. and Nakamura, E., Adv. Mater., 2009, 21:3776  doi: 10.1002/adma.v21:37

    45. [45]

      Liu, B., Chen, X., Zou, Y., Xiao, L., Xu, X., He, Y., Li, L. and Li, Y., Macromolecules, 2012, 45:6898  doi: 10.1021/ma301053q

    46. [46]

      Liu, B., Chen, X., Zou, Y., He, Y., Xiao, L., Xu, X., Li, L. and Li, Y., Polym. Chem., 2013, 4:470  doi: 10.1039/C2PY20580G

    47. [47]

      He, Z., Zhong, C., Su, S., Xu, M., Wu, H. and Cao, Y., Nat. Photon., 2012, 6:593  doi: 10.1038/nphoton.2012.190

    48. [48]

      Chen, H., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y. and Li, G., Nat. Photon., 2009, 3:649  doi: 10.1038/nphoton.2009.192

    49. [49]

      Huo, L., Li, Z., Guo, X., Wu, Y., Zhang, M., Ye, L., Zhang, S. and Hou, J., Polym. Chem., 2013, 4:3047  doi: 10.1039/c3py00074e

    50. [50]

      Huo, L., Zhang, S., Guo, X., Xu, F., Li, Y. and Hou, J., Angew. Chem., Int. Ed., 2011, 50:9697  doi: 10.1002/anie.201103313

    51. [51]

      Guo, X., Zhang, M., Tan, J., Zhang, S., Huo, L., Hu, W., Li, Y. and Hou, J., Adv. Mater., 2012, 24:6536  doi: 10.1002/adma.v24.48

    52. [52]

      Liu, B., Qiu, B., Chen, X., Xiao, L., Li, Y., He, Y., Jiang, L. and Zou, Y., Polym. Chem., 2014, 5:5002  doi: 10.1039/C4PY00392F

    53. [53]

      Hollinger, J., Jahnke, A.A., Coombs, N. and Seferos, D.S., J. Am. Chem. Soc., 2010, 132:8546  doi: 10.1021/ja103191u

    54. [54]

      Warnan, J., Cabanetos, C., Labban, A.E., Hansen, M.R., Tassone, C., Toney, M.F. and Beaujuge, P.M., Adv. Mater., 2014, 26:4357  doi: 10.1002/adma.v26.25

    55. [55]

      Cabanetos, C., Labban, A.E., Bartelt, J.A., Douglas, J.D., Mateker, W.R., Fréchet, J.M.J., McGehee, M.D. and Beaujuge, P.M., J. Am. Chem. Soc., 2013, 135:4656  doi: 10.1021/ja400365b

    56. [56]

      Huo, L., Ye, L., Wu, Y., Li, Z., Guo, X., Zhang, S. and Hou, J., Macromolecules, 2012, 45:6923  doi: 10.1021/ma301254x

    57. [57]

      Cui, C., Wong, W. and Li, Y., Energy Environ. Sci., 2014, 7:2276  doi: 10.1039/C4EE00446A

    58. [58]

      Qiu, B., Cui, R., Yuan, J., Peng, H., Zhang, Z., Li, Y. and Zou, Y., Phys. Chem. Chem. Phys., 2015, 17:17592  doi: 10.1039/C5CP02127H

    59. [59]

      McCullough, R.D., Adv. Mater., 1998, 10:93  doi: 10.1002/(ISSN)1521-4095

    60. [60]

      Mei, J. and Bao, Z., Chem. Mater., 2014, 26:604  doi: 10.1021/cm4020805

    61. [61]

      Hu, C., Fu, Y., Li, S., Xie, Z. and Zhang, Q., Polym. Chem., 2012, 3:2949  doi: 10.1039/c2py20504a

    62. [62]

      Yiu, A.T., Beaujuge, P.M., Lee, Q.P., Woo C.H., Toney, M.F. and Fréchet, J.M.J., J. Am. Chem. Soc., 2012, 134:2180  doi: 10.1021/ja2089662

    63. [63]

      Henssler, J.T. and Matzger, A.J., J. Org. Chem., 2012, 77:9298  doi: 10.1021/jo301744s

    64. [64]

      Wang, Y., Yang, F., Liu, Y., Peng, R., Chen, S. and Ge, Z., Macromolecules, 2013, 46:1368  doi: 10.1021/ma3025738

    65. [65]

      Wang, Y., Liu, Y., Chen, S., Peng, R. and Ge, Z., Chem. Mater., 2013, 25:3196  doi: 10.1021/cm401618h

    66. [66]

      Jiang, J.M., Lin, H.K., Lin, Y.C., Chen, H.C., Lan, S.C., Chang, C.K. and Wei, K.H., Macromolecules, 2014, 47:70  doi: 10.1021/ma401897b

    67. [67]

      Zhang, S., Ye, L., Zhao, W., Liu, D., Yao, H. and Hou, J., Macromolecules, 2014, 47:4653  doi: 10.1021/ma500829r

    68. [68]

      Zhou, W., Yu, C., Chen, H., Jia, T., Zhang, W., Yu, G. and Li, F., J. Phys. Chem. C, 2016, 120:4824  doi: 10.1021/acs.jpcc.6b00890

    69. [69]

      Miyata, Y., Nishinaga, T. and Komatsu, K., J. Org. Chem., 2005, 70:1147  doi: 10.1021/jo048282z

  • 加载中
    1. [1]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    2. [2]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    3. [3]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    4. [4]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    5. [5]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    6. [6]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    7. [7]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    8. [8]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    9. [9]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    10. [10]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    11. [11]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    12. [12]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    13. [13]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    14. [14]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    15. [15]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    16. [16]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    17. [17]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    18. [18]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    19. [19]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    20. [20]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

Metrics
  • PDF Downloads(0)
  • Abstract views(895)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return