Highly Efficient Random Terpolymers for Photovoltaic Applications with Enhanced Absorption and Molecular Aggregation
- Corresponding author: Jiang Liu, 546jiang@163.com Qiang Peng, qiangpengjohnny@yahoo.com
Citation:
Xiao-peng Xu, Guang-jun Zhang, Yun-zhe Zhao, Jiang Liu, Ying Li, Qiang Peng. Highly Efficient Random Terpolymers for Photovoltaic Applications with Enhanced Absorption and Molecular Aggregation[J]. Chinese Journal of Polymer Science,
;2017, 35(2): 249-260.
doi:
10.1007/s10118-017-1877-x
Chen, J.W. and Cao, Y., Acc. Chem. Res., 2009, 42:1709
doi: 10.1021/ar900061z
Lu, L.Y. and Yu, L.P., Adv. Mater., 2014, 26:4413
doi: 10.1002/adma.v26.26
Thompson, B.C. and Fréchet, J.M.J., Angew. Chem. Int. Ed., 2008, 47:58
doi: 10.1002/(ISSN)1521-3773
Li, Y.F., Acc. Chem. Res., 2012, 45:723
doi: 10.1021/ar2002446
Zhao, J.B., Li, Y., Yang, G.F., Jiang, K., Lin, H.R., Ade, H., Ma, W. and Yan, H., Nat. Energy, 2016, 1:15027
doi: 10.1038/nenergy.2015.27
Yang, Y., Chen, W., Dou, L.T., Chang, W.H., Duan, H.S., Bob, B., Li, G. and Yang, Y., Nat. Photon., 2015, 9:190
doi: 10.1038/nphoton.2015.9
Jiang, J.M., Chen, H.C., Lin, H.K., Yu, C.M., Lan, S.C., Liu, C.M. and Wei, K.H., Polym. Chem., 2013, 4:5321
doi: 10.1039/c3py00132f
Li, K., Li, Z.J., Feng, K., Xu, X.P., Wang, L.Y. and Peng, Q., J. Am. Chem. Soc., 2013, 135:13549
doi: 10.1021/ja406220a
Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M. and Heeger, A.J., Science, 2007, 317:222
doi: 10.1126/science.1141711
Yusoff, A.R.B.M., Kim, D., Kim, H.P., Shneider, F.K., Da Silva, W.J. and Jang, J., Energy Environ. Sci., 2015, 8:303
doi: 10.1039/C4EE03048F
Zheng, Z., Zhang, S.Q., Zhang, M.J., Zhao, K., Ye, L., Chen, Y., Yang, B. and Hou, J.H., Adv. Mater., 2015, 27:1189
doi: 10.1002/adma.201404525
Zhang, K., Gao, K., Xia, R., Wu, Z., Sun, C., Cao, J., Qian, L., Li, W., Liu, S., Huang, F., Peng, X., Ding, L., Yip, H.L. and Cao, Y., Adv. Mater., 2016, 28:4817
doi: 10.1002/adma.v28.24
Jung, J.W., Liu, F., Russell, T.P. and Jo, W.H., Energy Environ. Sci., 2013, 6:3301
doi: 10.1039/c3ee40689j
Liu, S.H., You, P., Li, J., Li, J., Lee, C.S., Ong, B.S., Surya, C. and Yan, F., Energy Environ. Sci., 2015, 8:1463
doi: 10.1039/C5EE00090D
Lu, L.Y., Xu, T., Chen, W., Landry, E.S. and Yu, L.P., Nat. Photon., 2014, 8:716
doi: 10.1038/nphoton.2014.172
Lu, L.Y., Chen, W., Xu, T. and Yu, L.P., Nat. Commun., 2015, 6:7327
doi: 10.1038/ncomms8327
Xu, X.P., Li, Z.J., Wang, Z.G., Li, K., Feng, K. and Peng, Q., Nano Energy, 2016, 25:170
doi: 10.1016/j.nanoen.2016.04.048
Gasparini, N., Salvador, M., Fladischer, S., Katsouras, A., Avgeropoulos, A., Spiecker, E., Chochos, C.L., Brabec, C.J. and Ameri, T., Adv. Energy Mater., 2015, 5:1501527
doi: 10.1002/aenm.201501527
Cheng, P., Li, Y.F. and Zhan, X.W., Energy Environ. Sci., 2014, 7:2005
doi: 10.1039/c3ee44202k
Zhang, J., Zhang, Y., Fang, J., Lu, K., Wang, Z., Ma, W. and Wei, Z., J. Am. Chem. Soc., 2015, 137:8176
doi: 10.1021/jacs.5b03449
An, Q.S., Zhang, F.J., Sun, Q.Q., Zhang, M., Zhang, J., Tang, W.H., Yin, X.X. and Deng, Z.B., Nano Energy, 2016, 26:180
doi: 10.1016/j.nanoen.2016.05.018
Tamilavan, V., Roh, K.H., Agneeswari, R., Lee, D.Y., Cho, S., Jin, Y., Park, S.H. and Hyun, M.H., J. Mater. Chem. A, 2014, 2:20126
doi: 10.1039/C4TA05086J
Huang, Y.S., Zhang, M., Chen, H.J., Wu, F., Cao, Z.C., Zhang, L.J. and Tan, S.T., J. Mater. Chem. A, 2014, 2:5218
doi: 10.1039/c4ta00020j
Kang, T.E., Kim, K.H. and Kim, B.J., J. Mater. Chem. A, 2014, 2:15252
doi: 10.1039/C4TA02426E
Tan, H., Yu, J.T., Wang, Y.F., Chen, J.H., Tao, Q., Liu, Y., Huang, J. and Zhu, W.G., Org. Electron., 2013, 14:1510
doi: 10.1016/j.orgel.2013.03.018
Fan, Q.P., Liu, Y., Xiao, M.J., Su, W.Y., Gao, H.S., Chen, J.H., Tan, H., Wang, Y.F., Yang, R.Q. and Zhu, W.G., J. Mater. Chem. C, 2015, 3:6240
doi: 10.1039/C5TC00785B
Yao, H.F., Ye, L., Zhang, H., Li, S.S., Zhang, S.Q. and Hou, J.H., Chem. Rev., 2016, 116:7397
doi: 10.1021/acs.chemrev.6b00176
Liu, P., Zhang, K., Liu, F., Jin, Y.C., Liu, S.J., Russell, T.P., Yip, H.L., Huang, F. and Cao, Y., Chem. Mater., 2014, 26:3009
doi: 10.1021/cm500953e
Hendriks, K.H., Heintges, G.H., Gevaerts, V.S., Wienk, M.M. and Janssen, R.A., Angew. Chem. Int. Ed., 2013, 52:8341
doi: 10.1002/anie.v52.32
Jiang, T., Yang, J., Tao, Y.T., Fan, C., Xue, L.W., Zhang, Z.G., Li, H., Li, Y.F. and Huang, W., Polym. Chem., 2016, 7:926
doi: 10.1039/C5PY01771H
Chang, W.H., Gao, J., Dou, L.T., Chen, C.C., Liu, Y.S. and Yang, Y., Adv. Energy Mater., 2014, 4:1300864
doi: 10.1002/aenm.201300864
Lee, J.W., Ahn, H. and Jo, W. H., Macromolecules, 2015, 48:7836
doi: 10.1021/acs.macromol.5b01826
Kanimozhi, C., Yaacobi-Gross, N., Chou, K.W., Amassian, A., Anthopoulos, T.D. and Patil, S., J. Am. Chem. Soc., 2012, 134:16532
doi: 10.1021/ja308211n
Li, W.W., Hendriks, K.H., Wienk, M.M. and Janssen, R.A.J., Acc. Chem. Res., 2016, 49:78
doi: 10.1021/acs.accounts.5b00334
Liu, Y.H., Li, G.W., Zhang, Z., Wu, L.L., Chen, J.Y., Xu, X.J., Chen, X.B., Ma, W. and Bo, Z.S., J. Mater. Chem. A, 2016, 4:13265
doi: 10.1039/C6TA05471D
Zhou, H.X., Yang, L.Q., Stuart, A.C., Price, S.C., Liu, S.B. and You, W., Angew. Chem. Int. Ed., 2011, 50:2995
doi: 10.1002/anie.201005451
Peng, Q., Liu, X.J., Su, D., Fu, G.W., Xu, J. and Dai, L.M., Adv. Mater., 2011, 23:4554
doi: 10.1002/adma.201101933
Lee, J., Kim, M., Kang, B., Jo, S.B., Kim, H.G., Shin, J. and Cho, K., Adv. Energy Mater., 2014, 4:1400087
doi: 10.1002/aenm.201400087
Lee, J., Jo, S.B., Kim, M., Kim, H.G., Shin, J., Kim, H. and Cho, K., Adv. Mater., 2014, 26:6706
doi: 10.1002/adma.v26.39
Wang, N., Chen, Z., Wei, W. and Jiang, Z.H., J. Am. Chem. Soc., 2013, 135:17060
doi: 10.1021/ja409881g
Xu, X.P., Li, Y., Luo, M.M. and Peng, Q., Chin. Chem. Lett., 2016, DOI:10.1016/j.cclet.2016.05.006
doi: 10.1016/j.cclet.2016.05.006
Wang, L.X., Cai, D.D., Zheng, Q.D., Tang, C.Q., Chen, S.C. and Yin, Z.G., ACS Macro Lett., 2013, 2:605
doi: 10.1021/mz400185k
Woo, C.H., Beaujuge, P.M., Holcombe, T.W., Lee, O.P. and Fréchet, J.M.J., J. Am. Chem. Soc., 2010, 132:15547
doi: 10.1021/ja108115y
Xu, X.P., Feng, K., Li, K. and Peng, Q., J. Mater. Chem. A, 2015, 3:23149
doi: 10.1039/C5TA07205K
Wang, Z.G., Li, Z.J., Xu, X.P., Li, Y., Li, K. and Peng, Q., Adv. Funct. Mater., 2016, 26:4643
doi: 10.1002/adfm.v26.26
Peng, Q., Lu, Z.Y., Huang, Y., Xie, M.G., Han, S.H., Peng, J.B. and Cao, Y., Macromolecules, 2004, 37:260
doi: 10.1021/ma0355397
Li, K., Li, Z.J., Feng, K., Xu, X.P., Wang, L.Y. and Peng, Q., J. Am. Chem. Soc., 2013, 135:13549
doi: 10.1021/ja406220a
Yang, Y.C., Wu, R.M., Wang, X., Xu, X.P., Li, Z.J., Li, K. and Peng, Q., Chem. Commun., 2014, 50:439
doi: 10.1039/C3CC47677D
Zhao, J.B., Li, Y.K., Lin, H.R., Liu, Y.H., Jiang, K., Mu, C., Ma, T.X., Lin, L., J.Y., Hu, H.W., Yu, D.M. and Yan, H., Energy Environ. Sci., 2015, 8:520
doi: 10.1039/C4EE02990A
Mihailetchi, V.D., Koster, L.J.A., Blom, P.W.M., Melzer, C., De Boer, B., van Duren, J.K.J. and Janssen, R.A.J., Adv. Funct. Mater., 2005, 15:795
doi: 10.1002/(ISSN)1616-3028
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Xin Lu , Haoran Sun , Xiaomeng Li , Chunrui Li , Jinfeng Wang , Dandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747