Citation: Yi-fan Zhao, Wen-jun Zou, Huan Li, Kun Lu, Wei Yan, Zhi-xiang Wei. Large-area, Flexible Polymer Solar Cell Based on Silver Nanowires as Transparent Electrode by Roll-to-Roll Printing[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 261-268. doi: 10.1007/s10118-017-1875-z shu

Large-area, Flexible Polymer Solar Cell Based on Silver Nanowires as Transparent Electrode by Roll-to-Roll Printing

  • Corresponding author: Kun Lu, lvk@nanoctr.cn Wei Yan, yanwei@mail.xjtu.edu.cn Zhi-xiang Wei, weizx@nanoctr.cn
  • Received Date: 17 September 2016
    Revised Date: 14 October 2016
    Accepted Date: 15 October 2016

    Fund Project: the National Natural Science Foundation of China 21474022the National Natural Science Foundation of China 21125420

  • Conventional organic solar cell's (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovoltaic fields. However, such a structure as well as conventional spin-coating method obviously restrict their industrial application. In this article, we report the deposition of silver nanowires (AgNWs) on the flexible substrate by slot-die printing. The obtained AgNWs films exhibited a high transmittance and a low resistance, and were further used as the transparent conductive electrode of OSCs. A typical conjugated polymer, poly[(2, 5-bis (2-hexyldecyloxy) phenylene)-alt-(5, 6-difluoro-4, 7-di (thiophen-2-yl) benzo[c] [1, 2, 5]thiadiazole)] (PPDT2FBT), was used as the active material to fabricate large-area (7 cm2) solar cells by a slot-die coating process. The power conversion efficiency (PCE) could reach 1.87% initially and further increased to 3.04% by thermal annealing. Compared to the performance of reference cell on ITO substrate, the result indicated that the AgNWs could be developed as an alternative substitute of conductive electrode to fabricate the large-area flexible OSCs by roll-to-roll printing.
  • 加载中
    1. [1]

      Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S.N., Glatthaar, M., Meyer, T. and Meyer, A., Sol. Energy Mater. Sol. Cells, 2007, 91:379  doi: 10.1016/j.solmat.2006.10.013

    2. [2]

      Krebs, F.C., Sol. Energy Mater. Sol. Cells, 2009, 93:465  doi: 10.1016/j.solmat.2008.12.012

    3. [3]

      Liu, W., Liu. S., Zawacka, N.K., Andersen, T.R., Cheng, P., Fu, L., Chen, M., Fu, W., Bundgaard, E., Jørgensen, M., Zhan, X., Krebs, F.C. and Chen, H., J. Mater. Chem. A, 2014, 2:19809  doi: 10.1039/C4TA04733H

    4. [4]

      Espinosa, N., Hösel, M., Jørgensen, M. and Krebs, F.C., Energy Environ. Sci., 2014, 7:855  doi: 10.1039/c3ee43212b

    5. [5]

      Søndergaard, R.R., Hösel, M. and Krebs, F.C., J. Polym. Sci., Part B:Polym. Phys., 2013, 51:16  doi: 10.1002/polb.v51.1

    6. [6]

      Gevorgyan, S.A., Madsen, M.V., Dam, H.F., Jørgensen, M., Fell, C.J., Anderson, K.F., Duck, B.C., Mescheloff, A., Katz, E.A., Elschner, A., Roesch, R., Hoppe, H., Hermenau, M., Riede, M. and Krebs, F.C., Sol. Energy Mater. Sol. Cells, 2013, 116:187  doi: 10.1016/j.solmat.2013.04.024

    7. [7]

      Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T.T. and Krebs, F.C., Mater. Today, 2012, 15:36  doi: 10.1016/S1369-7021(12)70019-6

    8. [8]

      Larsen-Olsen, T.T., Andersen, T.R., Andreasen, B., Böttiger, A.P.L., Bundgaard, E., Norrman, K., Andreasen, J.W., Jørgensen, M. and Krebs, F.C., Sol. Energy Mater. Sol. Cells, 2012, 97:43  doi: 10.1016/j.solmat.2011.08.025

    9. [9]

      Alstrup, J., Jorgensen, M., Medford, A.J. and Krebs, F.C., ACS Appl. Mater. Interfaces, 2010, 2:2819  doi: 10.1021/am100505e

    10. [10]

      Liao, X.F., Wang, J., Chen, S.Y., Chen, L. and Chen, Y.W., J. Polym. Sci., 2016, 34:491

    11. [11]

      Qu, J.F., Liu, J., Li, S.D., Xie, Z.Y. and Geng, Y.H., J. Polym. Sci., 2013, 31:815
       

    12. [12]

      Song, H.Y., Tong, H., Xie, Z.Y., Wang, L.X. and Wang, F.S., J. Polym. Sci., 2013, 31:1117

    13. [13]

      Choi, S., Potscavage, W.J. and Kippelen, B., J. Appl. Phys., 2009, 106:054507  doi: 10.1063/1.3211850

    14. [14]

      Xue, J., Uchida, S., Rand, B.P. and Forrest, S.R., Appl. Phys. Lett., 2004, 84:3013  doi: 10.1063/1.1713036

    15. [15]

      Song, M., You, D.S., Lim, K., Park, S., Jung, S., Kim, C.S., Kim, D.H., Kim, D.G., Kim, J.K., Park, J., Kang, Y.C., Heo, J., Jin, S.H., Park, J.H. and Kang, J.W., Adv. Funct. Mater., 2013, 23:4177  doi: 10.1002/adfm.v23.34

    16. [16]

      Selzer, F., Weiss, N., Kneppe, D., Bormann, L., Sachse, C., Gaponik, N., Eychmuller, A., Leo, K. and Muller-Meskamp, L., Nanoscale, 2015, 7:2777  doi: 10.1039/C4NR06502F

    17. [17]

      Kim, Y., Ryu, T.I., Ok, K.H., Kwak, M.G., Park, S., Park, N.G., Han, C.J., Kim, B.S., Ko, M.J., Son, H.J. and Kim, J.W., Adv. Funct. Mater., 2015, 28:4817

    18. [18]

      Noh, Y.J., Kim, S.S., Kim, T.W. and Na, S.I., Semicond. Sci. Technol., 2013, 28:125008  doi: 10.1088/0268-1242/28/12/125008

    19. [19]

      Jin, Y., Deng, D., Cheng, Y., Kong, L. and Xiao, F., Nanoscale, 2014, 6:4812  doi: 10.1039/c3nr05820d

    20. [20]

      Kim, T., Canlier, A., Kim, G.H., Choi, J., Park, M. and Han, S.M., ACS Appl. Mater. Interfaces, 2013, 5:788  doi: 10.1021/am3023543

    21. [21]

      Cheong, H.G., Triambulo, R.E., Lee, G.H., Yi, I.S. and Park, J.W., ACS Appl. Mater. Interfaces, 2014, 6:7846  doi: 10.1021/am5011354

    22. [22]

      Preston, C., Fang, Z., Murray, J., Zhu, H., Dai, J., Munday, J.N. and Hu, L., J. Mater. Chem. C, 2014, 2:1248  doi: 10.1039/C3TC31726A

    23. [23]

      Lee, S.J., Kim, Y.H., Kim, J.K., Baik, H., Park, J.H., Lee, J., Nam, J., Park, J.H., Lee, T.W., Yi, G.R. and Cho, J.H., Nanoscale, 2014, 6:11828  doi: 10.1039/C4NR03771E

    24. [24]

      Leem, D.S., Edwards, A., Faist, M., Nelson, J., Bradley, D.D. and de Mello, J.C., Adv. Mater., 2011, 23:4371  doi: 10.1002/adma.201100871

    25. [25]

      Hu, L., Kim, H.S., Lee, J.Y., Peumans, P. and Cui, Y., ACS Nano, 2010, 4:2955  doi: 10.1021/nn1005232

    26. [26]

      Lucera, L., Machui, F., Kubis, P., Schmidt, H.D., Adams, J., Strohm, S., Ahmad, T., Forberich, K., Egelhaaf, H.J. and Brabec, C.J., Energy Environ. Sci., 2016, 9:89  doi: 10.1039/C5EE03315B

    27. [27]

      Krebs, F.C., Espinosa, N., Hösel, M., Søndergaard, R.R. and Jørgensen, M., Adv. Mater., 2014, 26:29  doi: 10.1002/adma.201302031

    28. [28]

      Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., Zuo, Y., Ni, W., Zhang, H., Li, M., Hu, Z., Huang, F., Cao, Y., Liang, Z., Zhang, M., Russell, T.P. and Chen, Y., Nat. Photon., 2014, 9:35  doi: 10.1038/nphoton.2014.269

    29. [29]

      Nguyen, T.L., Choi, H., Ko, S.J., Uddin, M.A., Walker, B., Yum, S., Jeong, J.E., Yun, M.H., Shin, T.J., Hwang, S., Kim, J.Y. and Woo, H.Y., Energy Environ. Sci., 2014, 7:3040  doi: 10.1039/C4EE01529K

    30. [30]

      Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H. and Yan, H., Nat. Commun., 2014, 5:5293  doi: 10.1038/ncomms6293

    31. [31]

      You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C.C., Gao, J., Li, G. and Yang, Y., Nat. Commun., 2013, 4:1446  doi: 10.1038/ncomms2411

    32. [32]

      Zhang, J., Zhang, Y., Fang, J., Lu, K., Wang, Z., Ma, W. and Wei, Z., J. Am. Chem. Soc., 2015, 137:8176  doi: 10.1021/jacs.5b03449

    33. [33]

      Zheng, Z., Zhang, S., Zhang, J., Qin, Y., Li, W., Yu, R., Wei, Z. and Hou, J., Adv. Mater., 2016, 28:5133  doi: 10.1002/adma.v28.25

    34. [34]

      Zhang, K., Gao, K., Xia, R., Wu, Z., Sun, C., Cao, J., Qian, L., W, Li., Liu, S., Huang, F., Peng, X., Ding, L., Yip, H.L. and Cao, Y., Adv. Mater., 2016, 28:4817  doi: 10.1002/adma.v28.24

    35. [35]

      Krebs, F.C., Gevorgyan, S.A., Gholamkhass, B., Holdcroft, S., Schlenker, C., Thompson, M.E., Thompson, B.C., Olson, D., Ginley, D.S., Shaheen, S.E., Alshareef, H.N., Murphy, J.W., Youngblood, W.J., Heston, N.C., Reynolds, J.R., Jia, S., Laird, D., Tuladhar, S.M., Dane, J.G.A., Atienzar, P., Nelson, J., Kroon, J.M., Wienk, M.M., Janssen, R.J.A., Tvingstedt, K., Zhang, F., Andersson, M., Inganäs, O., Lira-Cantu, M., de Bettignies, R., Guillerez, S., Aernouts, T., Cheyns, D., Lutsen, L., Zimmermann, B., Würfel, U., Niggemann, M., Schleiermacher, H.F., Liska, P., Grätzel, M., Lianos, P., Katz, E.A., Lohwasser, W. and Jannon, B., Sol. Energy Mater. Sol. Cells, 2009, 93:1968  doi: 10.1016/j.solmat.2009.07.015

    36. [36]

      Krebs, F.C., Tromholt, T. and Jorgensen, M., Nanoscale, 2010, 2:873  doi: 10.1039/b9nr00430k

    37. [37]

      Langley, D.P., Giusti, G., Lagrange, M., Collins, R., Jiménez, C., Bréchet, Y. and Bellet, D., Sol. Energy Mater. Sol. Cells, 2014, 125:318  doi: 10.1016/j.solmat.2013.09.015

    38. [38]

      Dkhil, S.B., Duché, D., Gaceur, M., Thakur, A.K., Aboura, F.B., Escoubas, L., Simon, J.J., Guerrero, A., Bisquert, J., Garcia-Belmonte, G., Bao, Q., Fahlman, M., Videlot-Ackermann, C., Margeat, O. and Ackermann, J., Adv. Energy Mater., 2014, 4:1400805  doi: 10.1002/aenm.201400805

    39. [39]

      Servaites, J.D., Yeganeh, S., Marks, T.J. and Ratner, M.A., Adv. Funct. Mater., 2010, 20:97  doi: 10.1002/adfm.v20:1

  • 加载中
    1. [1]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    2. [2]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    3. [3]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    4. [4]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    5. [5]

      Kun WangJiaxuan QiuZefei WuYang LiuYongqi LiuXiangpeng ChenBao ZangJianmei ChenYunchao LeiLonglu WangQiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993

    6. [6]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    7. [7]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    8. [8]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    9. [9]

      Lixian Cai Yingxiang Ye . A flexible-robust MOF for efficient purification of perfluoropropane. Chinese Journal of Structural Chemistry, 2024, 43(11): 100368-100368. doi: 10.1016/j.cjsc.2024.100368

    10. [10]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    11. [11]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    12. [12]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    13. [13]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    14. [14]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    15. [15]

      Qinming Wu Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310

    16. [16]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    17. [17]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    18. [18]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    19. [19]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    20. [20]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

Metrics
  • PDF Downloads(0)
  • Abstract views(858)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return