Citation: Fan Yang, Cheng Li, Gui-tao Feng, Xu-dong Jiang, An-dong Zhang, Wei-wei Li. Bisperylene Bisimide Based Conjugated Polymer as Electron Acceptor for Polymer-Polymer Solar Cellsh[J]. Chinese Journal of Polymer Science, ;2017, 35(2): 239-248. doi: 10.1007/s10118-017-1870-4 shu

Bisperylene Bisimide Based Conjugated Polymer as Electron Acceptor for Polymer-Polymer Solar Cellsh

  • Corresponding author: Cheng Li, licheng1987@iccas.ac.cn Wei-wei Li, liweiwei@iccas.ac.cn
  • Received Date: 18 August 2016
    Revised Date: 7 September 2016
    Accepted Date: 12 September 2016

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Sciences XDB12030200the National Natural Science Foundation of China 21574138the National Natural Science Foundation of China 51603209

  • Perylene bisimide (PBI) unit has been widely used to design conjugated materials, which can be used as electron acceptor in organic solar cells due to its strong electron-deficient ability. In this work, a conjugated polymer based on PBI dimer as monomer was designed, synthesized, and compared to the conjugated polymer containing single PBI as repeating units. The two conjugated polymers were found to have similar molecular weight, absorption spectra and energy levels. Density functional theory calculation revealed that the PBI dimer-based polymer exhibited highly twisted conjugated backbone due to the large dihedral angle between the two PBI units. The PBI-based polymers as electron acceptor were applied into polymer-polymer solar cells, in which PBI dimer-based polymer solar cells were found to show a high short circuit current density (Jsc=11.2 mA·cm-2) and a high power conversion efficiency (PCE) of 4.5%. In comparison, the solar cells based on PBI-based polymer acceptor only provided a Jsc of 7.2 mA·cm-2 and PCE of 2.5%. The significantly enhanced PCE in PBI dimer-based solar cells was attributed to the mixed phase in blended thin films, as revealed by atom force microscopy. This study demonstrates that PBI dimer can be used to design polymer acceptors for high performance polymer-polymer solar cells.
  • 加载中
    1. [1]

      Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C. and Holmes, A.B., Nature, 1995, 376:498  doi: 10.1038/376498a0

    2. [2]

      Yu, G. and Heeger, A.J., J. Appl. Phys., 1995, 78:4510  doi: 10.1063/1.359792

    3. [3]

      Facchetti, A., Mater. Today, 2013, 16:123  doi: 10.1016/j.mattod.2013.04.005

    4. [4]

      Zhan, X., Tan, Z.A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y., Zhu, D., Kippelen, B. and Marder, S.R., J. Am. Chem. Soc., 2007, 129:7246  doi: 10.1021/ja071760d

    5. [5]

      Wienk, M.M., Kroon, J.M., Verhees, W.J.H., Knol, J., Hummelen, J.C., van Hal, P.A. and Janssen, R.A.J., Angew. Chem. Int. Ed., 2003, 42:3371  doi: 10.1002/anie.200351647

    6. [6]

      Lin, Y. and Zhan, X., Mater. Horiz., 2014, 1:470  doi: 10.1039/C4MH00042K

    7. [7]

      Lin, Y. and Zhan, X., Acc. Chem. Res., 2016, 49:175  doi: 10.1021/acs.accounts.5b00363

    8. [8]

      Lin, Y., Wang, J., Zhang, Z.G., Bai, H., Li, Y., Zhu, D. and Zhan, X., Adv. Mater., 2015, 27:1170  doi: 10.1002/adma.201404317

    9. [9]

      Lin, Y., Zhang, Z.G., Bai, H., Wang, J., Yao, Y., Li, Y., Zhu, D. and Zhan, X., Energy Environ. Sci., 2015, 8:610  doi: 10.1039/C4EE03424D

    10. [10]

      Lin, Y., He, Q., Zhao, F., Huo, L., Mai, J., Lu, X., Su, C.J., Li, T., Wang, J., Zhu, J., Sun, Y., Wang, C. and Zhan, X., J. Am. Chem. Soc., 2016, 138:2973  doi: 10.1021/jacs.6b00853

    11. [11]

      Lin, Y., Zhao, F., He, Q., Huo, L., Wu, Y., Parker, T.C., Ma, W., Sun, Y., Wang, C., Zhu, D., Heeger, A.J., Marder, S.R. and Zhan, X., J. Am. Chem. Soc., 2016, 138:4955  doi: 10.1021/jacs.6b02004

    12. [12]

      Gao, L., Zhang, Z.G., Xue, L., Min, J., Zhang, J., Wei, Z. and Li, Y., Adv. Mater., 2016, 28:1884  doi: 10.1002/adma.201504629

    13. [13]

      Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W. and Yan, H., Nat. Energy, 2016, 1:15027/1  doi: 10.1038/nenergy.2015.27

    14. [14]

      Yue, W., Lv, A., Gao, J., Jiang, W., Hao, L., Li, C., Li, Y., Polander, L.E., Barlow, S., Hu, W., Di Motta, S., Negri, F., Marder, S.R. and Wang, Z., J. Am. Chem. Soc., 2012, 134:5770  doi: 10.1021/ja301184r

    15. [15]

      Schmidt, R., Ling, M.M., Oh, J.H., Winkler, M., Könemann, M., Bao, Z. and Würthner, F., Adv. Mater., 2007, 19:3692  doi: 10.1002/(ISSN)1521-4095

    16. [16]

      Jiang, W., Li, Y. and Wang, Z., Acc. Chem. Res., 2014, 47:3135  doi: 10.1021/ar500240e

    17. [17]

      Zhan, X., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R. and Marder, S.R., Adv. Mater., 2011, 23:268  doi: 10.1002/adma.v23.2

    18. [18]

      Jiang, W., Ye, L., Li, X., Xiao, C., Tan, F., Zhao, W., Hou, J. and Wang, Z., Chem. Commun., 2014, 50:1024  doi: 10.1039/C3CC47204C

    19. [19]

      Sun, D., Meng, D., Cai, Y., Fan, B., Li, Y., Jiang, W., Huo, L., Sun, Y. and Wang, Z., J. Am. Chem. Soc., 2015, 137:11156  doi: 10.1021/jacs.5b06414

    20. [20]

      Meng, D., Sun, D., Zhong, C., Liu, T., Fan, B., Huo, L., Li, Y., Jiang, W., Choi, H., Kim, T., Kim, J.Y., Sun, Y., Wang, Z. and Heeger, A.J., J. Am. Chem. Soc., 2016, 138:375  doi: 10.1021/jacs.5b11149

    21. [21]

      Zhang, X., Lu, Z., Ye, L., Zhan, C., Hou, J., Zhang, S., Jiang, B., Zhao, Y., Huang, J., Zhang, S., Liu, Y., Shi, Q., Liu, Y. and Yao, J., Adv. Mater., 2013, 25:5791  doi: 10.1002/adma.v25.40

    22. [22]

      Jiang, B., Zhang, X., Zhan, C., Lu, Z., Huang, J., Ding, X., He, S. and Yao, J., Polym. Chem., 2013, 4:4631  doi: 10.1039/c3py00457k

    23. [23]

      Lin, Y., Wang, Y., Wang, J., Hou, J., Li, Y., Zhu, D. and Zhan, X., Adv. Mater., 2014, 26:5137  doi: 10.1002/adma.201400525

    24. [24]

      Lin, Y., Wang, J., Dai, S., Li, Y., Zhu, D. and Zhan, X., Adv. Energy Mater., 2014, 4:140020

    25. [25]

      Guo, Y., Li, Y., Awartani, O., Zhao, J., Han, H., Ade, H., Zhao, D. and Yan, H., Adv. Mater., 2016, 28:8483  doi: 10.1002/adma.v28.38

    26. [26]

      Zhang, Y., Wan, Q., Guo, X., Li, W., Guo, B., Zhang, M. and Li, Y., J. Mater. Chem. A, 2015, 3:18442  doi: 10.1039/C5TA05014F

    27. [27]

      Li, S., Zhang, H., Zhao, W., Ye, L., Yao, H., Yang, B., Zhang, S. and Hou, J., Adv. Energy Mater., 2016, 6:1501991  doi: 10.1002/aenm.201501991

    28. [28]

      Cheng, P., Ye, L., Zhao, X., Hou, J., Li, Y. and Zhan, X., Energy Environ. Sci., 2014, 7:1351  doi: 10.1039/C3EE43041C

    29. [29]

      Meng, D., Fu, H., Xiao, C., Meng, X., Winands, T., Ma, W., Wei, W., Fan, B., Huo, L., Doltsinis, N. L., Li, Y., Sun, Y. and Wang, Z., J. Am. Chem. Soc., 2016, 138:10184  doi: 10.1021/jacs.6b04368

    30. [30]

      Singh, R., Aluicio-Sarduy, E., Kan, Z., Ye, T., MacKenzie, R.C.I. and Keivanidis, P.E., J. Mater. Chem. A, 2014, 2:14348  doi: 10.1039/C4TA02851A

    31. [31]

      Wu, Q., Zhao, D., Schneider, A.M., Chen, W. and Yu, L., J. Am. Chem. Soc., 2016, 138:7248  doi: 10.1021/jacs.6b03562

    32. [32]

      Zhong, H., Wu, C.H., Li, C.Z., Carpenter, J., Chueh, C.C., Chen, J.Y., Ade, H. and Jen, A.K.Y., Adv. Mater., 2016, 28:951  doi: 10.1002/adma.v28.5

    33. [33]

      Lee, J., Singh, R., Sin, D.H., Kim, H.G., Song, K.C. and Cho, K., Adv. Mater., 2016, 28:69  doi: 10.1002/adma.201504010

    34. [34]

      Liu, Y., Lai, J.Y.L., Chen, S., Li, Y., Jiang, K., Zhao, J., Li, Z., Hu, H., Ma, T., Lin, H., Liu, J., Zhang, J., Huang, F., Yu, D. and Yan, H., J. Mater. Chem. A, 2015, 3:13632  doi: 10.1039/C5TA03093E

    35. [35]

      Schmidt, C.D., Lang, N., Jux, N. and Hirsch, A., Chem-Eur. J., 2011, 17:5289  doi: 10.1002/chem.v17.19

    36. [36]

      Yu, Y., Yang, F., Ji, Y., Wu, Y., Zhang, A., Li, C. and Li, W., J. Mater. Chem. C, 2016, 4:4134

    37. [37]

      Sun, Y.M., Seo, J.H., Takacs, C.J., Seifter, J. and Heeger, A.J., Adv. Mater., 2011, 23:1679  doi: 10.1002/adma.201004301

    38. [38]

      Li, W., Hendriks, K.H., Furlan, A., Roelofs, W.S.C., Meskers, S.C.J., Wienk, M.M. and Janssen, R.A.J., Adv. Mater., 2014, 26:1565  doi: 10.1002/adma.201304360

  • 加载中
    1. [1]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    2. [2]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    5. [5]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    6. [6]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    7. [7]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    8. [8]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    9. [9]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    10. [10]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    11. [11]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    12. [12]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    13. [13]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    14. [14]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    15. [15]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    16. [16]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    17. [17]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    18. [18]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    19. [19]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    20. [20]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

Metrics
  • PDF Downloads(0)
  • Abstract views(907)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return