Citation: Min-fang An, Hao-jun Xu, You Lv, Li Zhang, Qun Gu, Feng Tian, Zong-bao Wang. The Influence of Chitin Nanocrystals on Structural Evolution of Ultra-high Molecular Weight Polyethylene/Chitin Nanocrystal Fibers in Hot-drawing Process[J]. Chinese Journal of Polymer Science, ;2016, 34(11): 1373-1385. doi: 10.1007/s10118-016-1843-z shu

The Influence of Chitin Nanocrystals on Structural Evolution of Ultra-high Molecular Weight Polyethylene/Chitin Nanocrystal Fibers in Hot-drawing Process

  • Corresponding author: Zong-bao Wang, wangzongbao@nbu.edu.cn
  • Received Date: 27 March 2016
    Revised Date: 21 June 2016
    Accepted Date: 18 July 2016

    Fund Project: the National Natural Science Foundation of China 51273210

  • Ultra-high molecular weight polyethylene (UHMWPE)/chitin nanocrystal (CNC) fibers were prepared. Compared with the pure UHMWPE fibers, the ultimate tensile strength and Young's modulus of UHMWPE/CNC fibers are improved by 15.7% and 49.6%, respectively, with the addition of chitin nanocrystals (CNCs) of 1 wt%. The melting temperature (Tm) of UHMWPE/CNC fibers was higher than that of pure UHMWPE fibers. Pure UHMWPE fibers and UHMWPE/CNC fibers were characterized with respect to crystallinity, orientation and kebab structure by wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM). It is found that the CNCs act as the shish structure in UHMWPE/CNC fibers and the kebab crystals are grown around the CNCs. There was almost no difference between pure UHMWPE fibers and UHMWPE/CNC fibers in orientation. But the degree of crystallinity of various stages of UHMWPE/CNC fibers was respectively higher than the corresponding stage of pure UHMWPE fibers. Moreover, the addition of 1 wt% CNCs improved the thickness of kebab crystals and accelerated the transformation of kebab to shish.
  • 加载中
    1. [1]

      Porter, R.S., Kanamoto, T. and Zachariades, A.E., Polymer, 1994, 35(23):4979  doi: 10.1016/0032-3861(94)90652-1

    2. [2]

      Dyer, S.R., Lassila, L.V.J., Jokinenben, M. and Vallittu, P.K., Dent. Mater., 2004, 20(10):947  doi: 10.1016/j.dental.2003.12.003

    3. [3]

      Jordan, N.D., Olley, R.H., Bassetta, D.C., Hineb, P.J. and Ward, I.M., Polymer, 2002, 43(12):3397  doi: 10.1016/S0032-3861(02)00104-0

    4. [4]

      Smook, J., Hamersma, W. and Pennings, A.J., J. Mater. Sci., 1984, 19(4):1359  doi: 10.1007/BF01120049

    5. [5]

      Smook, J. and Pennings, A., J. Appl. Polym. Sci., 1982, 27(6):2209  doi: 10.1002/app.1982.070270631

    6. [6]

      Hoogsteen, W., Pennings, A.J. and Tenbrinke, G., Colloid. Polym. Sci., 1990, 268(3):245  doi: 10.1007/BF01490249

    7. [7]

      Pennings, A.J. and Smook, J., J. Mater. Sci., 1984, 19(10):3443  doi: 10.1007/BF00549837

    8. [8]

      Krueger, D. and Yeh, G.S.Y., J. Macromol. Sci., Part B:Phys., 1972, 6(3):431

    9. [9]

      Yeh, J.T., Lin, S. C., Tu, C.W., Hsie, K.H. and Chang, F.C., J. Mater. Sci., 2008, 43(14):4892  doi: 10.1007/s10853-008-2711-1

    10. [10]

      Litvinov, V.M., Xu, J.J., Melian, C., Demco, D.E. and Moller, M., Macromolecules, 2011, 44(23):9254  doi: 10.1021/ma201888f

    11. [11]

      Ohta, Y., Murase, H. and Hashimoto, T., J. Polym. Sci., Part B:Polym. Phys., 2005, 43(19):2639  doi: 10.1002/(ISSN)1099-0488

    12. [12]

      Chae, H.G. and Kumar, S., Science, 2008, 319(5865):908  doi: 10.1126/science.1153911

    13. [13]

      Ruan, S.L., Gao, P. and Yu, T.X., Polymer, 2006, 47(5):1604  doi: 10.1016/j.polymer.2006.01.020

    14. [14]

      Zhang, Y., Yu, J., Zhou, C., Chen, L. and Hu, Z., Polym. Compos., 2010, 31(4):684

    15. [15]

      Yeh, J.T., Lin, S.C., Chen, K.N. and Huang, K.S., J. Appl. Polym. Sci., 2008, 110(5):2538  doi: 10.1002/app.v110:5

    16. [16]

      Yeh, J.T., Lai, Y.C., Liu, H., Shu, Y.C., Huang, C.Y., Huang, K.S. and Chen, K.N., Polym. Int., 2011, 60(1):59  doi: 10.1002/pi.v60.1

    17. [17]

      Yeh, J.T., Wu, T.W., Lai, Y.C., Li, Q.C., Zhou, H.P., Zhou, Q. and Huang, K.S., Polym. Eng. Sci., 2011, 51(12):2552  doi: 10.1002/pen.v51.12

    18. [18]

      Yeh, J.T., Wu, T.W., Lai, Y.C., Zhou, H.P., Zhou, Q., Li, Q.C. and Chen, K.N., Polym. Eng. Sci., 2011, 51(4):687  doi: 10.1002/pen.v51.4

    19. [19]

      Yeh, J.T., Wang, C.K., Yeh, A., Huang, L.K., Wang, W.H., Hsieh, K.H. and Chen, K.N., Polym. Int., 2013, 62(4):591  doi: 10.1002/pi.2013.62.issue-4

    20. [20]

      Yeh, J.T., Wang, C.K., Tsai, C.C., Lin, C.H., Huang, C.Y., Chen, K.N. and Chiu, S.H., J. Polym. Res., 2013, 20(9):1

    21. [21]

      Yeh, J.T., Tsai, C.C., Wang, C.K., Shao, J.W., Xiao, M.Z. and Chen, S.C., Carbohydr. Polym., 2014, 101:1  doi: 10.1016/j.carbpol.2013.08.034

    22. [22]

      Iijima, S., Nature, 1991, 354(6348):56  doi: 10.1038/354056a0

    23. [23]

      Heath, L., Zhu, L. and Thielemans, W., ChemSusChem, 2013, 6(3):537  doi: 10.1002/cssc.201200717

    24. [24]

      Wang, B., Li, J., Zhang, J., Li, H., Chen, P., Gu, Q. and Wang, Z., Carbohydr. Polym., 2013, 95(1):100  doi: 10.1016/j.carbpol.2013.02.055

    25. [25]

      Dufresne, A., Kellerhals, M.B. and Witholt, B., Macromolecules, 1999, 32(22):7396  doi: 10.1021/ma990564r

    26. [26]

      Zhang, F., Fang, M., Wang, X.Z., Yang, X., Ming, Y. and Liang, X., Chin. Chem. Lett., 2006, 17(6):883

    27. [27]

      Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E. and Das, S., Biomaterials, 2005, 26(23):4817  doi: 10.1016/j.biomaterials.2004.11.057

    28. [28]

      Wang, J., Wang, Z., Li, J., Wang, B., Liu, J., Chen, P. and Gu, Q., Carbohydr. Polym., 2012, 87(1):784  doi: 10.1016/j.carbpol.2011.08.066

    29. [29]

      Goldstein, A.S., Juarez, T.M., Helmke, C.D., Gustin, M.C. and Mikos, A.G., Biomaterials, 2001, 22(11):1279  doi: 10.1016/S0142-9612(00)00280-5

    30. [30]

      Liu, M., Huang, J., Luo, B. and Zhou, C., Int. J. Biol. Macromol., 2015, 78:23  doi: 10.1016/j.ijbiomac.2015.03.059

    31. [31]

      An, M., Xu, H., Lv, Y., Duan, T., Tian, F., Hong, L., Gu, Q. and Wang, Z., RSC Adv., 2016, 6(25):20629  doi: 10.1039/C5RA25786G

    32. [32]

      Stawski, D., Rabiej, S., Herczyńska, L. and Draczyński, Z., J. Therm. Anal. Calorim., 2008, 93:489  doi: 10.1007/s10973-007-8691-6

    33. [33]

      Paillet, M. and Dufresne, A., Macromolecules, 2001, 34(19):6527  doi: 10.1021/ma002049v

    34. [34]

      Tian, F., Hong, L.X., Wang, Y.Z., Yang, C.M., Lin, J.Y. and Li, X.Y., Nucl. Sci. Technol., 2015, 26(3):1

    35. [35]

      Hammersley, A.P., Svensson, S.O. and Thompson, A., Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, 346(1):312

    36. [36]

      Alexander, L.E., J. Polym. Sci., Part B:Polym. Lett., 1969, 9:635

    37. [37]

      Tang, Y., Jiang, Z., Men, Y., An, L., Enderle, H.F., Lilge, D. and Rieger, J., Polymer, 2007, 48(17):5125  doi: 10.1016/j.polymer.2007.06.056

    38. [38]

      Keum, J.K., Zuo, F. and Hsiao, B.S., Macromolecules, 2008, 41(13):4766  doi: 10.1021/ma800063e

    39. [39]

      Zhou, D., Yang, S.G., Lei, J., Hsiao, B.S. and Li, Z.M., Macromolecules, 2015, 48(18):6652  doi: 10.1021/acs.macromol.5b01402

    40. [40]

      Phillips, A.W., Bhatia, A., Zhu, P.W. and Edward, G., Macromolecules, 2011, 44(9):3517  doi: 10.1021/ma200040s

    41. [41]

      Ohta, Y., Murase, H. and Hashimoto, T., J. Polym. Sci., Part B:Polym. Phys., 2010, 48(17):1861  doi: 10.1002/polb.v48:17

    42. [42]

      Somani, R.H., Yang, L., Zhu, L. and Hsiao, B.S., Polymer, 2005, 46(20):8587  doi: 10.1016/j.polymer.2005.06.034

  • 加载中
    1. [1]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    2. [2]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    3. [3]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    4. [4]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    5. [5]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    6. [6]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    7. [7]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    8. [8]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

Metrics
  • PDF Downloads(0)
  • Abstract views(1064)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return