Citation: Xiao-sa Jin, Yuan-yuan Pang, Sheng-xiang Ji. From Self-assembled Monolayers to Chemically Patterned Brushes: Controlling the Orientation of Block Copolymer Domains in Films by Substrate Modification[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 659-678. doi: 10.1007/s10118-016-1800-x shu

From Self-assembled Monolayers to Chemically Patterned Brushes: Controlling the Orientation of Block Copolymer Domains in Films by Substrate Modification

  • Corresponding author: Sheng-xiang Ji, sji@ciac.ac.cn
  • Received Date: 18 February 2016
    Revised Date: 13 March 2016
    Accepted Date: 2 March 2016

    Fund Project: This work was financially supported by the National Natural Science Foundation of China Nos. 51173181 and 51373166"The Hundred Talents Program" from the Chinese Academy of Sciences and the International S&T Cooperation Program from Department of Science and Technology of Jilin Province No. 20160414032GH

  • Block copolymer lithography is emerging as one of the leading technologies for patterning nanoscale dense features. In almost all potential applications of this technology, control over the orientation of cylindrical and lamellar domains is required for pattern transfer from the block copolymer film. This review highlights the state-of-art development of brushes to modify the substrates to control the assembly behaviors of block copolymers in films. Selected important contributions to the development of self-assembled monolayers, polymer brushes and mats, and chemically patterned brushes are discussed.
  • 加载中
    1. [1]

      http://www.itrs.net

    2. [2]

      Herr, D.J.C., J. Mater. Res., 2011, 26: 122

    3. [3]

      Matsen, M.W. and Bates, F.S., Macromolecules, 1996, 29: 1091

    4. [4]

      Mansky, P., Harrison, C.K., Chaikin, P.M., Register, R.A. and Yao, N., Appl. Phys. Lett., 1996, 68: 2586

    5. [5]

      Park, M., Harrison, C., Chaikin, P.M., Register, R.A. and Adamson, D.H., Science, 1997, 276: 1401

    6. [6]

      Ji, S.X., Wan, L., Liu, C.C. and Nealey, P.F., Prog. Polym. Sci., 2016, 54-55: 76

    7. [7]

      Stoykovich, M.P. and Nealey, P.F., Mater. Today, 2006, 9: 20

    8. [8]

      Park, S., Lee, D.H., Xu, J., Kim, B., Hong, S.W., Jeong, U., Xu, T. and Russell, T.P., Science, 2009, 323: 1030

    9. [9]

      Yager, K.G., Berry, B.C., Page, K., Patton, D., Karim, A. and Amis, E.J., Soft Matter., 2009, 5: 622

    10. [10]

      Morkved, T.L., Lu, M., Urbas, A.M., Ehrichs, E.E., Jaeger, H. M., Mansky. P. and Russell, T.P., Science, 1996, 273: 931

    11. [11]

      Majewski, P.W., Gopinadhan, M., Jang, W.S., Lutkenhaus, J.L. and Osuji, C.O., J. Am. Chem. Soc., 2010, 132: 17516

    12. [12]

      Kim, S.H., Misner, M.J., Xu, T., Kimura, M. and Russell, T.P., Adv. Mater., 2004, 16: 226

    13. [13]

      Park, S., Kim, B., Xu, J., Hofmann, T., Ocko, B.M. and Russell, T.P., Macromolecules, 2009, 42: 1278

    14. [14]

      Tada, Y., Yoshida, H., Ishida, Y., Hirai, T., Bosworth, J.K., Dobisz, E., Ruiz, R., Takenaka, M., Hayakawa, T. and Hasegawa, H., Macromolecules, 2012, 45: 292

    15. [15]

      Bang, J., Jeong, U., Ryu, D.Y., Russell, T.P. and Hawker, C.J., Adv. Mater., 2009, 21: 4769

    16. [16]

      Bates, C.M., Maher, M.J., Janes, D.W., Ellison, C.J. and Willson, C.G., Macromolecules, 2014, 47: 2

    17. [17]

      Kim, H.C., Park, S.M. and Hinsberg, W.D., Chem. Rev., 2010, 110: 146

    18. [18]

      Luo, M. and Epps, T.H., Macromolecules, 2013, 46: 7567

    19. [19]

      Bates, F.S., Science, 1991, 251: 898

    20. [20]

      Bates, F.S. and Fredrickson, G.H., Annu. Rev. Phys. Chem., 1990, 41: 525

    21. [21]

      Bates, F.S. and Fredrickson, G.H., Phys. Today, 1999, 52: 32

    22. [22]

      Bates, F.S., Hillmyer, M.A., Lodge, T.P., Bates, C.M., Delaney, K.T. and Fredrickson, G.H., Science, 2012, 336: 434

    23. [23]

      Fredrickson, G.H. and Bates, F.S., Annu. Rev. Mater. Sci., 1996, 26: 501

    24. [24]

      Fasolka, M.J. and Mayes, A.M., Annu. Rev. Mater. Res., 2001, 31: 323

    25. [25]

      Coulon, G., Russell, T.P., Deline, V.R. and Green, P.F., Macromolecules, 1989, 22: 2581

    26. [26]

      Russell, T.P., Coulon, G., Deline, V.R. and Miller, D.C., Macromolecules, 1989, 22: 4600

    27. [27]

      Coulon, G., Ausserre, D. and Russell, T.P., J. Phys.-Paris, 1990, 51: 777

    28. [28]

      Coulon, G., Collin, B., Ausserre, D., Chatenay, D. and Russell, T.P., J. Phys.-Paris, 1990, 51: 2801

    29. [29]

      Ji, S.X., Liu, C.C., Son, J.G., Gotrik, K., Craig, G.S.W., Gopalan, P., Himpsel, F.J., Char, K. and Nealey, P.F., Macromolecules, 2008, 41: 9098

    30. [30]

      Kim, S., Bates, C.M., Thio, A., Cushen, J.D., Ellison, C.J., Willson, C.G. and Bates, F.S., ACS Nano, 2013, 7: 9905

    31. [31]

      Fasolka, M.J., Banerjee, P., Mayes, A.M., Pickett, G. and Balazs, A.C., Macromolecules, 2000, 33: 5702

    32. [32]

      Pickett, G.T., Witten, T.A. and Nagel, S.R., Macromolecules, 1993, 26: 3194

    33. [33]

      Harrison, C., Park, M., Chaikin, P., Register, R.A., Adamson, D.H. and Yao, N., Macromolecules, 1998, 31: 2185

    34. [34]

      Zhang, X.H., Berry, B.C., Yager, K.G., Kim, S., Jones, R.L., Satija, S., Pickel, D.L., Douglas, J.F. and Karim, A., ACS Nano, 2008, 2: 2331

    35. [35]

      Horvat, A., Knoll, A., Krausch, G., Tsarkova, L., Lyakhova, K.S., Sevink, G.J.A., Zvelindovsky, A.V. and Magerle, R., Macromolecules, 2007, 40: 6930

    36. [36]

      Knoll. A., Horvat, A., Lyakhova, K.S., Krausch, G., Sevink, G.J.A., Zvelindovsky, A.V. and Magerle, R., Phys. Rev. Lett., 2002, 89: 035501

    37. [37]

      Ji, S.X., Liu, C.C., Liao, W., Fenske, A.L., Craig, G.S.W. and Nealey, P.F., Macromolecules, 2011, 44: 4291

    38. [38]

      Stein, G.E., Cochran, E.W., Katsov, K., Fredrickson, G.H., Kramer, E.J., Li, X. and Wang, J., Phys. Rev. Lett., 2007, 98: 158302

    39. [39]

      Stein, G.E., Kramer, E.J., Li, X.F. and Wang, J., Macromolecules, 2007, 40: 2453

    40. [40]

      Genzer, J. and Kramer, E.J., Phys. Rev. Lett., 1997, 78: 4946

    41. [41]

      Nisato, G., Ermi, B.D., Douglas, J.F. and Karim, A., Macromolecules, 1999, 32: 2356

    42. [42]

      Karim, A., Douglas, J.F., Lee, B.P., Glotzer, S.C., Rogers, J.A., Jackman, R.J., Amis, E.J. and Whitesides, G.M., Phys. Rev. E, 1998, 57: R6273

    43. [43]

      Boltau, M., Walheim, S., Mlynek, J., Krausch, G. and Steiner, U., Nature, 1998, 391: 877

    44. [44]

      Heier, J., Kramer, E.J., Walheim, S. and Krausch, G., Macromolecules, 1997, 30: 6610

    45. [45]

      Heier, J., Genzer, J., Kramer, E.J., Bates, F.S., Walheim, S. and Krausch, G., J. Chem. Phys., 1999, 111: 11101

    46. [46]

      Heier, J., Sivaniah, E. and Kramer, E.J., Macromolecules, 1999, 32: 9007

    47. [47]

      Heier, J., Kramer, E.J., Groenewold, J. and Fredrickson, G.H., Macromolecules, 2000, 33: 6060

    48. [48]

      Delamarche, E., Michel, B., Gerber, C., Anselmetti, D., Guntherodt, H.J., Wolf, H. and Ringsdorf, H., Langmuir, 1994, 10: 2869

    49. [49]

      Delamarche, E., Michel, B., Kang, H. and Gerber, C., Langmuir, 1994, 10: 4103

    50. [50]

      Kluth, G.J. and Sung, M.M., Langmuir, 1997, 13: 3775

    51. [51]

      Silberzan, P., Leger, L., Ausserre, D. and Benattar, J.J., Langmuir, 1991, 7: 1647

    52. [52]

      Brzoska, J.B., Shahidzadeh, N. and Rondelez, F., Nature, 1992, 360: 719

    53. [53]

      Brzoska, J.B., Benazouz, I. and Rondelez, F., Langmuir, 1994, 10: 4367

    54. [54]

      Parikh, A.N., Allara, D.L., Azouz, I.B. and Rondelez, F., J. Phys. Chem., 1994, 98: 7577

    55. [55]

      Peters, R.D., Yang, X.M., Kim, T.K. and Nealey, P.F., Langmuir, 2000, 16: 9620

    56. [56]

      Peters, R.D., Yang, X.M., Kim, T.K., Sohn, B.H. and Nealey, P.F., Langmuir, 2000, 16: 4625

    57. [57]

      Peters, R.D., Yang, X.M. and Nealey, P.F., Macromolecules, 2002, 35: 1822

    58. [58]

      Kim, T.K., Yang, X.M., Peters, R.D., Sohn, B.H. and Nealey, P.F., J. Phys. Chem. B, 2000, 104: 7403

    59. [59]

      Yang, X.M., Peters, R.D., Nealey, P.F., Solak, H.H. and Cerrina, F., Macromolecules, 2000, 33: 9575

    60. [60]

      Albert, J.N.L., Baney, M.J., Stafford, C.M., Kelly, J.Y. and Epps, T.H., ACS Nano, 2009, 3: 3977

    61. [61]

      Kellogg, G.J., Walton, D.G., Mayes, A.M., Lambooy, P., Russell, T.P., Gallagher, P.D. and Satija, S.K., Phys. Rev. Lett., 1996, 76: 2503

    62. [62]

      Walton, D.G., Kellogg, G.J., Mayes, A.M., Lambooy, P. and Russell, T.P., Macromolecules, 1994, 27: 6225

    63. [63]

      Mansky, P., Liu, Y., Huang, E., Russell, T.P. and Hawker, C.J., Science, 1997, 275: 1458

    64. [64]

      Huang, E., Russell, T.P., Harrison, C., Chaikin, P.M., Register, R.A., Hawker, C.J. and Mays, J., Macromolecules, 1998, 31: 7641

    65. [65]

      Huang, E., Mansky, P., Russell, T.P., Harrison, C., Chaikin, P.M., Register, R.A., Hawker, C.J. and Mays, J., Macromolecules, 1999, 33: 80

    66. [66]

      Mansky, P., Russell, T.P., Hawker, C.J., Mays, J., Cook, D.C. and Satija, S.K., Phys. Rev. Lett., 1997, 79: 237

    67. [67]

      Mansky, P., Russell, T.P., Hawker, C.J., Pitsikalis, M. and Mays, J., Macromolecules, 1997, 30: 6810

    68. [68]

      Ham, S., Shin, C., Kim, E., Ryu, D.Y., Jeong, U., Russell, T.P. and Hawker, C.J., Macromolecules, 2008, 41: 6431

    69. [69]

      Han, E., Stuen, K.O., La, Y.H., Nealey, P.F. and Gopalan, P., Macromolecules, 2008, 41: 9090

    70. [70]

      Kim, B.H., Lee, D.H., Kim, J.Y., Shin, D.O., Jeong, H.Y., Hong, S., Yun, J.M., Koo, C.M., Lee, H. and Kim, S.O., Adv. Mater., 2011, 23: 5618

    71. [71]

      Huang, E., Pruzinsky, S., Russell, T.P., Mays, J. and Hawker, C.J., Macromolecules, 1999, 32: 5299

    72. [72]

      In, I., La, Y.H., Park, S.M., Nealey, P.F. and Gopalan, P., Langmuir, 2006, 22: 7855

    73. [73]

      Sauer, B.B. and Dee, G.T., Macromolecules, 2002, 35: 7024

    74. [74]

      Bates, C.M., Seshimo, T., Maher, M.J., Durand, W.J., Cushen, J.D., Dean, L.M., Blachut, G., Ellison, C.J. and Willson, C.G., Science, 2012, 338: 775

    75. [75]

      Yoshida, H., Suh, H.S., Ramirez-Hernandez, A., Lee, J.I., Aida, K., Wan, L., Ishida, Y., Tada, Y., Ruiz, R., de Pablo, J. and Nealey, P.F., J. Photopolym. Sci. Technol., 2013, 26: 55

    76. [76]

      Ryu, D.Y., Shin, K., Drockenmuller, E., Hawker, C.J. and Russell, T.P., Science, 2005, 308: 236

    77. [77]

      Bang, J., Bae, J., Löwenhielm, P., Spiessberger, C., Given-Beck, S.A., Russell, T.P. and Hawker, C.J., Adv. Mater., 2007, 19: 4552

    78. [78]

      Han, E., In, I., Park, S.M., La, Y.H., Wang, Y., Nealey, P.F. and Gopalan, P., Adv. Mater., 2007, 19: 4448

    79. [79]

      Jung, H., Leibfarth, F.A., Woo, S., Lee, S., Kang, M., Moon, B., Hawker, C.J. and Bang, J., Adv. Funct. Mater., 2013, 23: 1597

    80. [80]

      Ji, S. X., Liu, G., Zheng, F., Craig, G.S.W., Himpsel, F.J. and Nealey, P.F., Adv. Mater., 2008, 20: 3054

    81. [81]

      Liu, G.L., Ji, S.X., Stuen, K.O., Craig, G.S.W., Nealey, P.F. and Himpsel, F.J., J. Vac. Sci. Technol, B, 2009, 27: 3038

    82. [82]

      She, M.S., Lo, T.Y. and Ho, R.M., ACS Nano, 2013, 7: 2000

    83. [83]

      Guo, R., Kim, E., Gong, J., Choi, S., Ham, S. and Ryu, D.Y., Soft Matter, 2011, 7: 6920

    84. [84]

      Ji, S.X., Liu, C.C., Liu, G.L. and Nealey, P.F., ACS Nano, 2010, 4: 599

    85. [85]

      Onses, M.S., Thode, C.J., Liu, C.C., Ji, S.X., Cook, P.L., Himpsel, F.J. and Nealey, P.F., Adv. Funct. Mater., 2011, 21: 3074

    86. [86]

      Thode, C.J., Cook, P.L., Jiang, Y.M., Onses, M.S., Ji, S.X., Himpsel, F.J. and Nealey, P.F., Nanotechnology, 2013, 24: 155602

    87. [87]

      Ji, S.X., Liao, W. and Nealey, P.F., Macromolecules, 2010, 43: 6919

    88. [88]

      Kim, S.O., Solak, H.H., Stoykovich, M.P., Ferrier, N.J., de Pablo, J.J. and Nealey, P.F., Nature, 2003, 424: 411

    89. [89]

      Stoykovich, M.P., Kang, H., Daoulas, K.C., Liu, G., Liu, C.C., de Pablo, J.J. and Nealey, P.F., ACS Nano, 2007, 1: 168

    90. [90]

      Stoykovich, M.P., Muller, M., Kim, S.O., Solak, H.H., Edwards, E.W., de Pablo, J.J. and Nealey, P.F., Science, 2005, 308: 1442

    91. [91]

      Edwards, E.W., Montague, M.F., Solak, H.H., Hawker, C.J. and Nealey, P.F., Adv. Mater., 2004, 16: 1315

    92. [92]

      Edwards, E.W., Muller, M., Stoykovich, M.P., Solak, H.H., de Pablo, J.J. and Nealey, P.F., Macromolecules, 2007, 40: 90

    93. [93]

      Liu, C.C., Han, E., Onses, M.S., Thode, C.J., Ji, S.X., Gopalan, P. and Nealey, P.F., Macromolecules, 2011, 44: 1876

    94. [94]

      Liu, C.C., Ramirez-Hernandez, A., Han, E., Craig, G.S.W., Tada, Y., Yoshida, H., Kang, H.M., Ji, S.X., Gopalan, P., de Pablo, J.J. and Nealey, P.F., Macromolecules, 2013, 46: 1415

    95. [95]

      Wilmes, G.M., Durkee, D.A., Balsara, N.P. and Liddle, J.A., Macromolecules, 2006, 39: 2435

    96. [96]

      Ji, S.X., Nagpal, U., Liao, W., Liu, C.C., de Pablo, J.J. and Nealey, P.F., Adv. Mater., 2011, 23: 3692

    97. [97]

      Ruiz, R., Kang, H.M., Detcheverry, F.A., Dobisz, E., Kercher, D.S., Albrecht, T.R., de Pablo, J.J. and Nealey, P.F., Science, 2008, 321: 936

    98. [98]

      Ji, S.X., Nagpal, U., Liu, G.L., Delcambre, S.P., Muller, M., de Pablo, J.J. and Nealey, P.F., ACS Nano, 2012, 6: 5440

    99. [99]

      Cheng, J.Y., Rettner, C.T., Sanders, D.P., Kim, H.C. and Hinsberg, W.D., Adv. Mater., 2008, 20: 3155

    100. [100]

      Kang, H.M., Craig, G.S.W., Han, E., Gopalan, P. and Nealey, P.F., Macromolecules, 2012, 45: 159

    101. [101]

      Liu, G.L., Thomas, C.S., Craig, G.S.W. and Nealey, P.F., Adv. Funct. Mater., 2010, 20: 1251

    102. [102]

      Tada, Y., Akasaka, S., Yoshida, H., Hasegawa, H., Dobisz, E., Kercher, D. and Takenaka, M., Macromolecules, 2008, 41: 9267

    103. [103]

      Wan, L. and Yang, X.M., Langmuir, 2009, 25: 12408

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    10. [10]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

Metrics
  • PDF Downloads(0)
  • Abstract views(729)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return