Citation: Ye Lei, Ren Jie, Cai Shen-yang, Wang Zhi-gang, Li Jian-bo. Poly(lactic acid) Nanocomposites with Improved Flame Retardancy and Impact Strength by Combining of Phosphinates and Organoclay[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 785-796. doi: 10.1007/s10118-016-1799-z shu

Poly(lactic acid) Nanocomposites with Improved Flame Retardancy and Impact Strength by Combining of Phosphinates and Organoclay

  • Corresponding author: Ren Jie, renjie6598@163.com Li Jian-bo, lijianbo@tongji.edu.cn
  • Received Date: 27 December 2015
    Revised Date: 29 January 2016

    Fund Project: the Shanghai Automotive Industry Science and Technology Development Foundation No. 1006the National Natural Science Foundation of China No. 51203118

  • To minimize the loading level of the char-forming phosphorus based flame retardants in the poly(lactic acid) (PLA) with reduced flammability, we have developed the flame-retarded PLA nanocomposites by melt blending method incorporating organically modified montmorillonite (OMMT) and aluminium diethylphosphinate (AlPi) additives. The influence of AlPi and OMMT on flame retardancy and thermal stability of PLA was thoroughly investigated by means of the limiting oxygen index (LOI), UL94 test, cone calorimeter, X-ray diffraction (XRD), thermogravimetric analysis and scanning electronic microscopy (SEM). The experimental results show that the PLA/AlPi/OMMT system has excellent fire retardancy. The LOI value increases from 19% for pristine PLA to 28% for the flame-retarded PLA. Cone calorimeter analysis of the PLA/AlPi/OMMT exhibits a reduction in the peak heat release rate values by 26.2%. Thermogravimetric analysis and SEM of cone calorimeter residues indicate that OMMT significantly enhances the thermal stability, promotes char-forming and suppresses the melt dripping. The research of this study implies that the combining of the flame retardant and organoclay results in a synergistic effect. In addition, the flame-retarded PLA nanocomposite also exhibits notable increase in the impact strength and the elongation at break.
  • 加载中
    1. [1]

      Fukushima, K., Murariu, M., Camino, G. and Dubois, P., Polym. Degrad. Stab., 2010, 95(6): 1063

    2. [2]

      Ren, J., Zhang, Z.H., Feng, Y., Li, J.B. and Yuan, W.Z., J. Appl. Polym. Sci., 2010, 118(5): 2650

    3. [3]

      Ren, J., "Biodegradable Poly(lactic acid): Synthesis, Modification, Processing and Applications", Springer Berlin Heidelberg, Berlin, 2010, p.54

    4. [4]

      Ding, P., Kang, B., Zhang, J., Yang, J.W., Song, N., Tang, S.F. and Shi, L.Y., J. Colloid Interf. Sci., 2015, 440: 46

    5. [5]

      Fox, D.M., Novy, M., Brown, K., Zammarano, M., Harris, R.H. Jr., Murariu, M., McCarthy, E.D., Seppala, J.E. and Gilman, J.W., Polym. Degrad. Stab., 2014, 106: 54

    6. [6]

      Wang, Q.F. and Shi, W.F., Polym. Degrad. Stab., 2006, 91(6): 1289

    7. [7]

      Lin, H.J., Han, L.J., Wang, X.M., Bian, Y.J. and Li, Y.S., Polym. Adv. Technol., 2013, 24(6): 576

    8. [8]

      Deng, J., Zhu, S.W. and Shi, W.F., J. Appl. Polym. Sci., 2004, 94(5): 2065

    9. [9]

      Chen, X., Zhuo, J. and Jiao, C., Polym. Degrad. Stab., 2012, 97(11): 2143

    10. [10]

      Chen, X., Jiao, C., Li, S. and Sun, J., J. Polym. Res., 2011, 18(6): 2229

    11. [11]

      Chen, D., Li, J. and Ren, J., Polym. Int., 2011, 60(4): 599

    12. [12]

      Tang, G., Wang, X., Zhang, R., Wang, B.B., Hong, N.N., Hu, Y., Song, L. and Gong, X.L., Ind. Eng. Chem. Res., 2013, 52(22): 7362

    13. [13]

      Tang, G., Wang, X., Xing, W.Y., Zhang, P., Wang, B.B., Hong, N.N., Yang, W., Hu, Y. and Song, L., Ind. Eng. Chem. Res., 2012, 51(37): 12009

    14. [14]

      Tang, G., Huang, X.J., Ding, H.C., Wang, X., Jiang, S.D., Zhou, K.Q., Wang, B.B., Yang, W. and Hu, Y., RSC Advances, 2014, 4(18): 8985

    15. [15]

      Lorenzetti, A., Besco, S., Hrelja, D., Roso, M., Gallo, E., Schartel, B. and Modesti, M., Polym. Degrad. Stab., 2013, 98(11): 2366

    16. [16]

      Dahiya, J.B., Kumar, N. and Bockhorn, H., Fire. Mater., 2014, 38(1): 1

    17. [17]

      Gallo, E., Braun, U., Schartel, B., Russo, P. and Acierno, D., Polym. Degrad. Stab., 2009, 94(8): 1245

    18. [18]

      Braun, U. and Schartel, B., Macromol. Mater. Eng., 2008, 293(3): 206

    19. [19]

      Ramani, A. and Dahoe, A.E., Polym. Degrad. Stab., 2014, 105: 1

    20. [20]

      Bourbigot, S., Samyn, F., Turf, T. and Duquesne, S., Polym. Degrad. Stab., 2010, 95(3): 320

    21. [21]

      Samyn, F. and Bourbigot, S., Polym. Degrad. Stab., 2012, 97(11): 2217

    22. [22]

      Vannier, A., Duquesne, S., Bourbigot, S. and Alongi, J., Thermochim. Acta, 2009, 495(1-2): 155

    23. [23]

      Alongi, J., Fiber. Polym., 2011, 12(2): 166

    24. [24]

      Hapuarachchi, T.D. and Peijs, T., Compos. Part. A-Appl. S., 2010, 41(8): 954

    25. [25]

      Chiang, M.F., Chu, M.Z. and Wu, T.M., Polym. Degrad. Stab., 2011, 96(1): 60

    26. [26]

      Wei, P., Bocchini, S. and Camino, G., Eur. Polym. J., 2013, 49(4): 932

    27. [27]

      Murariu, M., Dechief, A.L., Bonnaud, L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S. and Dubois, P., Polym. Degrad. Stab., 2010, 95(5): 889

    28. [28]

      Solarski, S., Mahjoubi, F., Ferreira, M., Devaux, E., Bachelet, P., Bourbigot, S., Delobel, R., Coszach, P., Murariu, M., Ferreira, A.D., Alexandre, M., Degee, P. and Dubois, P., J. Mater. Sci., 2007, 42(13): 5105

    29. [29]

      Cheng, K.C., Yu, C.B., Guo, W.J., Wang, S.F., Carbo. Polym., 2012, 87(2): 1119

    30. [30]

      Wang, X., Hu, Y.A., Song, L., Xuan, S.Y., Xing, W.Y., Bai, Z.M. and Lu, H.D., Ind. Eng. Chem. Res, 2011, 50(2): 713

    31. [31]

      Zanetti, M., Camino, G. and Mulhaupt, R., Polym. Degrad. Stab., 2001, 74(3): 413

    32. [32]

      Gilman, J.W., Appl. Clay. Sci., 1999, 15(1-2): 31

    33. [33]

      Morgan, A.B., Polym. Adv. Technol., 2006, 17(4): 206

    34. [34]

      Kiliaris, P. and Papaspyrides, C.D., Prog. Polym. Sci., 2010, 35(7): 902

    35. [35]

      Fina, A., Cuttica, F. and Camino, G., Polym. Degrad. Stab., 2012, 97(12): 2619

    36. [36]

      Pluta, M., J. Polym. Sci., Part B: Polym. Phys., 2006, 44(23): 3392

    37. [37]

      Kopinke, F.D., Remmler, M., Mackenzie, K. and Moder, M., Polym. Degrad. Stab., 1996, 53(3): 329

    38. [38]

      Qin, H.L., Zhang, S.M., Zhao, C.G., Hu, G.J. and Yang, M.S., Polymer, 2005, 46(19): 8386

    39. [39]

      Alexander, B.M., Polym. Adv. Technol., 2006, 17(10): 206

    40. [40]

      Braun, U., Bahr, H., Sturm, H. and Schartel, B., Polym. Adv. Technol., 2008, 19(6): 680

    41. [41]

      Braun, U., Schartel, B., Fichera, M.A. and Jaeger, C., Polym. Degrad. Stab., 2007, 92(8): 1528

  • 加载中
    1. [1]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    2. [2]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    3. [3]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    4. [4]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    5. [5]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    6. [6]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    9. [9]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    10. [10]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    11. [11]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    12. [12]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    13. [13]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    14. [14]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    17. [17]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    18. [18]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    19. [19]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    20. [20]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

Metrics
  • PDF Downloads(0)
  • Abstract views(727)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return