Citation: Dong-ling Qiao, Xian-yang Bao, Hong-sheng Liu, Xing-xun Liu, Ling Chen, Long Yu, Xiao-qing Zhang, Pei Chen . Preparation of Cassava Starch-based Superabsorbent Polymer Using a Twin-roll Mixer as Reactor[J]. Chinese Journal of Polymer Science, ;2014, 32(10): 1348-1356. doi: 10.1007/s10118-014-1516-8 shu

Preparation of Cassava Starch-based Superabsorbent Polymer Using a Twin-roll Mixer as Reactor

  • Received Date: 13 December 2013
    Revised Date: 7 March 2014

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (Nos. 31130042, 21174043, 31301554 and 31101340).

  • Cassava starch-based superabsorbent polymer was successfully synthesized using a new technology that based on modification of a Haake twin-roll mixer as reactor. The cassava starch was first gelatinized then modified by grafting under external shear stress in the reactor. The torque and temperature curves as a function of time can reflect the variations in the reactor and also offer some information about the copolymerization reaction. The advantages of this system include starch modification can be carried out (1) with high starch concentration, (2) under controlled time and (3) smaller amount of sample (60 g) required. The technology provides useful guides for reactive extrusion. The starch grafted composites were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and thermal gravimetric analysis (TGA). The TGA was also used for determining the percentage of grafting ratio. The results show that the cassava starch has been successfully grafted with acrylamide then crosslinked by N,N'-methylene-bisacrylamide using this reactor. The ultimate water absorbent capacity of the cassava-based superabsorbent polymer impacted by various pH values illustrated that the acid and basic solutions inhibit the ability of imbibing water. Additionally, gel properties of the cassava-based superabsorbent polymer were investigated. It can be concluded that the structure of cassava gel is stable, while the three dimensional network of cassava-based superabsorbent polymer is rigid but its structure could not resist external force effectively and everlastingly since G' was decreased with increasing amplitude.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

  • 加载中
    1. [1]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

Metrics
  • PDF Downloads(0)
  • Abstract views(684)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return