2017 Volume 35 Issue 1
2017, 35(1): 1-24
doi: 10.1007/s10118-017-1871-3
Abstract:
Structural DNA nanotechnology, an emerging technique that utilizes the nucleic acid molecule as generic polymer to programmably assemble well-defined and nano-sized architectures, holds great promise for new material synthesis and constructing functional nanodevices for different purposes. In the past three decades, rapid development of this technique has enabled the syntheses of hundreds and thousands of DNA nanostructures with various morphologies at different scales and dimensions. Among them, discrete three-dimensional (3D) DNA nanostructures not only represent the most advances in new material design, but also can serve as an excellent platform for many important applications. With precise spatial addressability and capability of arbitrary control over size, shape, and function, these nanostructures have drawn particular interests to scientists in different research fields. In this review article, we will briefly summarize the development regarding the synthesis of discrete DNA 3D nanostructures with various size, shape, geometry, and topology, including our previous work and recent progress by other groups. In detail, three methods majorly used to synthesize the DNA 3D objects will be introduced accordingly. Additionally, the principle, design rule, as well as pros and cons of each method will be highlighted. As functions of these discrete 3D nanostructures have drawn great interests to researchers, we will further discuss their cutting-edge applications in different areas, ranging from novel material synthesis, new device fabrication, and biomedical applications, etc. Lastly, challenges and outlook of these promising nanostructures will be given based on our point of view.
Structural DNA nanotechnology, an emerging technique that utilizes the nucleic acid molecule as generic polymer to programmably assemble well-defined and nano-sized architectures, holds great promise for new material synthesis and constructing functional nanodevices for different purposes. In the past three decades, rapid development of this technique has enabled the syntheses of hundreds and thousands of DNA nanostructures with various morphologies at different scales and dimensions. Among them, discrete three-dimensional (3D) DNA nanostructures not only represent the most advances in new material design, but also can serve as an excellent platform for many important applications. With precise spatial addressability and capability of arbitrary control over size, shape, and function, these nanostructures have drawn particular interests to scientists in different research fields. In this review article, we will briefly summarize the development regarding the synthesis of discrete DNA 3D nanostructures with various size, shape, geometry, and topology, including our previous work and recent progress by other groups. In detail, three methods majorly used to synthesize the DNA 3D objects will be introduced accordingly. Additionally, the principle, design rule, as well as pros and cons of each method will be highlighted. As functions of these discrete 3D nanostructures have drawn great interests to researchers, we will further discuss their cutting-edge applications in different areas, ranging from novel material synthesis, new device fabrication, and biomedical applications, etc. Lastly, challenges and outlook of these promising nanostructures will be given based on our point of view.
2017, 35(1): 25-35
doi: 10.1007/s10118-017-1869-x
Abstract:
A facile method to fabricate tough and highly stretchable polyacrylamide (PAM) nanocomposite physical hydrogel (NCP gel) was proposed. The hydrogels are dually crosslinked single network with the PAM grafted vinyl hybrid silica nanoparticles (VSNPs) as the analogous covalent crosslinking points and the reversible hydrogen bonds among the PAM chains as the physical crosslinking points. In order to further elucidate the toughening mechanism of the PAM NCP gel, especially to understand the role of the dual crosslinking points, the PAM hybrid hydrogels (H gels) and a series of poly(acrylamide-co-dimethylacrylamide) (P(AM-co-DMAA)) NCP gels were designed and fabricated. Their mechanical properties were compared with those of the PAM NCP gels. The PAM H gels are prepared by simply mixing the PAM chains with bare silica nanoparticles (SNPs). Relative to the poor mechanical properties of the PAM H gel, the PAM NCP gel is remarkably tough and stretchable and also generates large number of micro-cracks to stop notch propagation, indicating the important role of PAM grafted VSNPs in toughening the NCP gel. In the P(AM-co-DMAA) NCP gels, the P(AM-co-DMAA) chains are grafted on VSNPs and the polydimethylacrylamide (PDMAA) only forms very weak hydrogen bonds between themselves. It is found that mechanical properties of the PAM NCP gel, such as the tensile strength and the elongation at break, are enhanced significantly, but those of the P(AM-co-DMAA) NCP gels decreased rapidly with decreasing AM content. This result reveals the role of the hydrogen bonds among the grafted polymer chains as the physical crosslinking points in toughening the NCP gel.
A facile method to fabricate tough and highly stretchable polyacrylamide (PAM) nanocomposite physical hydrogel (NCP gel) was proposed. The hydrogels are dually crosslinked single network with the PAM grafted vinyl hybrid silica nanoparticles (VSNPs) as the analogous covalent crosslinking points and the reversible hydrogen bonds among the PAM chains as the physical crosslinking points. In order to further elucidate the toughening mechanism of the PAM NCP gel, especially to understand the role of the dual crosslinking points, the PAM hybrid hydrogels (H gels) and a series of poly(acrylamide-co-dimethylacrylamide) (P(AM-co-DMAA)) NCP gels were designed and fabricated. Their mechanical properties were compared with those of the PAM NCP gels. The PAM H gels are prepared by simply mixing the PAM chains with bare silica nanoparticles (SNPs). Relative to the poor mechanical properties of the PAM H gel, the PAM NCP gel is remarkably tough and stretchable and also generates large number of micro-cracks to stop notch propagation, indicating the important role of PAM grafted VSNPs in toughening the NCP gel. In the P(AM-co-DMAA) NCP gels, the P(AM-co-DMAA) chains are grafted on VSNPs and the polydimethylacrylamide (PDMAA) only forms very weak hydrogen bonds between themselves. It is found that mechanical properties of the PAM NCP gel, such as the tensile strength and the elongation at break, are enhanced significantly, but those of the P(AM-co-DMAA) NCP gels decreased rapidly with decreasing AM content. This result reveals the role of the hydrogen bonds among the grafted polymer chains as the physical crosslinking points in toughening the NCP gel.
2017, 35(1): 36-45
doi: 10.1007/s10118-017-1873-1
Abstract:
A series of cis-5-norbornene-endo-2,3-dicarboxylic anhydride (NDCA, M1) derivatives (M2-M4) with different types of nonpolar substituted groups were synthesized and characterized by 1H/13C-NMR and mass spectrometry (MS). Ring-opening metathesis polymerization (ROMP) of these monomers using the Grubbs third generation catalyst (G3) generated high molecular weight polymers with much improved solubility compared with the NDCA's homopolymer. It was found that the solubility of these polymers increased with increased substituent's steric hindrance. The living polymerization of NDCA derivative containing the bulkiest substituent (M4) catalyzed by G3 in tetrahydrofuran was confirmed by the kinetic studies with low polydispersity indices (PDI) (<1.30). By using sequential ROMP, well-defined diblock copolymers containing anhydride groups were synthesized.
A series of cis-5-norbornene-endo-2,3-dicarboxylic anhydride (NDCA, M1) derivatives (M2-M4) with different types of nonpolar substituted groups were synthesized and characterized by 1H/13C-NMR and mass spectrometry (MS). Ring-opening metathesis polymerization (ROMP) of these monomers using the Grubbs third generation catalyst (G3) generated high molecular weight polymers with much improved solubility compared with the NDCA's homopolymer. It was found that the solubility of these polymers increased with increased substituent's steric hindrance. The living polymerization of NDCA derivative containing the bulkiest substituent (M4) catalyzed by G3 in tetrahydrofuran was confirmed by the kinetic studies with low polydispersity indices (PDI) (<1.30). By using sequential ROMP, well-defined diblock copolymers containing anhydride groups were synthesized.
2017, 35(1): 46-53
doi: 10.1007/s10118-016-1857-6
Abstract:
The complexation between circular DNA and individual chains of PEO-b-P4VP with a relatively long PEO block and a short P4VP block is highly controllable when the interaction between DNA and the polymer is weak enough. When one circular DNA chain is taken into consideration, and the polymer concentration is far below its critical micelle concentration (CMC), polymer chains are absorbed by DNA chain due to the interaction between the negatively charged DNA chain and the slightly positively charged P4VP block chains. After the adsorption/complexation, the DNA chain is converted into a nanoring (type 1). In the nanoring, the DNA chain is sufficiently wrapped by the polymer and adopts a fully stretched conformation, so that the DNA compact ratio in the nanorings is close to 1. When the polymer concentration is close to but lower than the CMC, the free polymer chains in the solution are adsorbed not only by the DNA chain but also by the polymer chains that have already been adsorbed on the DNA chain. As a result, the circular DNA chain adsorbs more polymer chains, and thus the resultant nanoring (type 2) has a larger width. In the type 2 nanoring, the DNA chain is slightly compressed; the DNA compact ratio is only about 2-3. Therefore, complexation induced by the weak interaction between DNA and PEO-b-P4VP below the CMC can produce narrow-disperse and large nanorings with a perimeter of micrometers, which are difficult to prepare by existing methods.
The complexation between circular DNA and individual chains of PEO-b-P4VP with a relatively long PEO block and a short P4VP block is highly controllable when the interaction between DNA and the polymer is weak enough. When one circular DNA chain is taken into consideration, and the polymer concentration is far below its critical micelle concentration (CMC), polymer chains are absorbed by DNA chain due to the interaction between the negatively charged DNA chain and the slightly positively charged P4VP block chains. After the adsorption/complexation, the DNA chain is converted into a nanoring (type 1). In the nanoring, the DNA chain is sufficiently wrapped by the polymer and adopts a fully stretched conformation, so that the DNA compact ratio in the nanorings is close to 1. When the polymer concentration is close to but lower than the CMC, the free polymer chains in the solution are adsorbed not only by the DNA chain but also by the polymer chains that have already been adsorbed on the DNA chain. As a result, the circular DNA chain adsorbs more polymer chains, and thus the resultant nanoring (type 2) has a larger width. In the type 2 nanoring, the DNA chain is slightly compressed; the DNA compact ratio is only about 2-3. Therefore, complexation induced by the weak interaction between DNA and PEO-b-P4VP below the CMC can produce narrow-disperse and large nanorings with a perimeter of micrometers, which are difficult to prepare by existing methods.
2017, 35(1): 54-65
doi: 10.1007/s10118-016-1858-5
Abstract:
A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three-step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RAFT-mediated heterogeneous polymerization in a water/ethanol solution, followed by the quaternization of S-PVBnIm with bromoalkanes and anion exchange. The CCS polymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained CCS polymers were used as the effective emulsifiers for oil-in-water high internal phase emulsions (HIPEs). Multiple oils with different polarity including n-dodecane, undecanol, toluene and octanol were emulsified using 0.5 wt% S-PVBnIm aqueous solution under the acidic condition to form HIPEs with long-term stabilities. The excellent emulsification properties of CCS PILs were demonstrated by HIPE formation for a variety of oils. The properties of HIPEs in terms of emulsion type and oil droplet size were characterized by the confocal laser scanning microscopy (CLSM). The intriguing capability of CCS PILs to stabilize HIPEs of various oils holds great potentials for the practical applications.
A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three-step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RAFT-mediated heterogeneous polymerization in a water/ethanol solution, followed by the quaternization of S-PVBnIm with bromoalkanes and anion exchange. The CCS polymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained CCS polymers were used as the effective emulsifiers for oil-in-water high internal phase emulsions (HIPEs). Multiple oils with different polarity including n-dodecane, undecanol, toluene and octanol were emulsified using 0.5 wt% S-PVBnIm aqueous solution under the acidic condition to form HIPEs with long-term stabilities. The excellent emulsification properties of CCS PILs were demonstrated by HIPE formation for a variety of oils. The properties of HIPEs in terms of emulsion type and oil droplet size were characterized by the confocal laser scanning microscopy (CLSM). The intriguing capability of CCS PILs to stabilize HIPEs of various oils holds great potentials for the practical applications.
2017, 35(1): 66-77
doi: 10.1007/s10118-016-1859-4
Abstract:
The doubly thermo-responsive triblock copolymer nanoparticles of polystyrene-block-poly(N-isopropylacrylamide)-block-poly[N,N-(dimethylamino) ethyl methacrylate] (PS-b-PNIPAM-b-PDMAEMA) are successfully prepared through the seeded RAFT polymerization in situ by using the PS-b-PNIPAM-TTC diblock copolymer nanoparticles as the seed. The seeded RAFT polymerization undergoes a pseudo-first-order kinetics procedure, and the molecular weight increases with the monomer conversion linearly. The hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles increases with the extension of the PDMAEMA block. In addition, the double thermo-response behavior of the PS-b-PNIPAM-b-PDMAEMA nanoparticles is detected by turbidity analysis, temperature-dependent 1H-NMR analysis, and DLS analysis. The seeded RAFT polymerization is believed as a valid method to prepare triblock copolymer nanoparticles containing two thermo-responsive blocks.
The doubly thermo-responsive triblock copolymer nanoparticles of polystyrene-block-poly(N-isopropylacrylamide)-block-poly[N,N-(dimethylamino) ethyl methacrylate] (PS-b-PNIPAM-b-PDMAEMA) are successfully prepared through the seeded RAFT polymerization in situ by using the PS-b-PNIPAM-TTC diblock copolymer nanoparticles as the seed. The seeded RAFT polymerization undergoes a pseudo-first-order kinetics procedure, and the molecular weight increases with the monomer conversion linearly. The hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles increases with the extension of the PDMAEMA block. In addition, the double thermo-response behavior of the PS-b-PNIPAM-b-PDMAEMA nanoparticles is detected by turbidity analysis, temperature-dependent 1H-NMR analysis, and DLS analysis. The seeded RAFT polymerization is believed as a valid method to prepare triblock copolymer nanoparticles containing two thermo-responsive blocks.
2017, 35(1): 78-86
doi: 10.1007/s10118-017-1872-2
Abstract:
The influence of crystallization temperature (Tc) on the number of spiral growths on poly(butylene succinate) (PBS) single crystals, obtained by self-seeding method, was systematically studied. The studies show that the statistical average number of spiral growths formed on the PBS single crystals decays exponentially with respect to the Tc. Inspired by BCF (Bruton, Cabrera and Frank) theory and L-H (Lauritzen and Hoffman) theory, a thermodynamic model has been proposed, in which the origin of spiral growth was treated as a nucleation process. The model suggests that the nucleation rate of spiral growth depends on the inverse square of super-cooling degree, which predicted the density of spiral growth formed on lamellae, and was consistent with the experiments very well.
The influence of crystallization temperature (Tc) on the number of spiral growths on poly(butylene succinate) (PBS) single crystals, obtained by self-seeding method, was systematically studied. The studies show that the statistical average number of spiral growths formed on the PBS single crystals decays exponentially with respect to the Tc. Inspired by BCF (Bruton, Cabrera and Frank) theory and L-H (Lauritzen and Hoffman) theory, a thermodynamic model has been proposed, in which the origin of spiral growth was treated as a nucleation process. The model suggests that the nucleation rate of spiral growth depends on the inverse square of super-cooling degree, which predicted the density of spiral growth formed on lamellae, and was consistent with the experiments very well.
2017, 35(1): 87-97
doi: 10.1007/s10118-016-1856-7
Abstract:
Shape persistent conformations reduce the complexity of polymer materials. Herein, we propose a concept on the nanopolymer that is a nanoscale polymer chain with the repeat units of nanomonomers. In this article, a soluble organic nanopolymer of wide bandgap semiconductors was synthesized by the Yamamoto polymerization of nanogrid monomer as the repeat units with the rectangle size of ~1.7 nm×1.2 nm. The alkyl side chain substituent at 9-position of fluorenes guarantees the polygrid with excellent solubility. Tetrafluorenes in the conjugation-interrupted backbones of polygrid acts as the active light-emitting centers without obvious green band in the fluorescence spectra of the films after 10 h annealing at 180℃, indicating this nanopolymer exhibits excellent spectral stability. Such soluble nanopolymers will be the fifth-generation of macromolecular materials with a potential character of overall performance improvement.
Shape persistent conformations reduce the complexity of polymer materials. Herein, we propose a concept on the nanopolymer that is a nanoscale polymer chain with the repeat units of nanomonomers. In this article, a soluble organic nanopolymer of wide bandgap semiconductors was synthesized by the Yamamoto polymerization of nanogrid monomer as the repeat units with the rectangle size of ~1.7 nm×1.2 nm. The alkyl side chain substituent at 9-position of fluorenes guarantees the polygrid with excellent solubility. Tetrafluorenes in the conjugation-interrupted backbones of polygrid acts as the active light-emitting centers without obvious green band in the fluorescence spectra of the films after 10 h annealing at 180℃, indicating this nanopolymer exhibits excellent spectral stability. Such soluble nanopolymers will be the fifth-generation of macromolecular materials with a potential character of overall performance improvement.
2017, 35(1): 98-107
doi: 10.1007/s10118-017-1868-y
Abstract:
The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface charges on the PE-grafted electrode and a second parallel electrode. The numerical study reveals that, under a positive external electric field, the shorter and negatively charged PE chains are more responsive than the longer PE chains in terms of the relative changes in their respective brush heights. Whereas under a negative external electric field, the opposite was observed. The total electric force on the grafted PE chains was calculated and it was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The underlying mechanism was unraveled through analyzing the total electric field across the two oppositely charged electrodes.
The self-consistent field theory has been employed to numerically study the response of bi-disperse flexible polyelectrolyte (PE) brushes grafted on an electrode to electric fields generated by opposite surface charges on the PE-grafted electrode and a second parallel electrode. The numerical study reveals that, under a positive external electric field, the shorter and negatively charged PE chains are more responsive than the longer PE chains in terms of the relative changes in their respective brush heights. Whereas under a negative external electric field, the opposite was observed. The total electric force on the grafted PE chains was calculated and it was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The underlying mechanism was unraveled through analyzing the total electric field across the two oppositely charged electrodes.
2017, 35(1): 108-122
doi: 10.1007/s10118-017-1880-2
Abstract:
The hierarchical crystalline morphologies and orientation structures across the thickness direction in high-density polyethylene (HDPE) molded bars were investigated via a novel melt-penetrating processing method named multi-melt multi-injection molding (M3IM). The samples with various mold temperatures (20, 40 and 60℃) were prepared, and the effects of the external temperature profile on the evolution of crystalline microstructures were studied. With scanning electron microscopy (SEM), the transition of crystalline morphology from ring-banded structure to oriented lamellae was observed with decreasing mold temperature, and the oriented lamellae were formed at the sub-skin layer of the samples at the lowest mold temperature, which was further testified by differential scanning calorimetry (DSC). With the decline of mold temperature, the degree of orientation, obtained from two-dimensional small angle X-ray scattering (2D-SAXS), was increased and long periods rose a little. Thus, decreasing mold temperature was beneficial to the formation of orientation structures because the relaxation of chains was weakened.
The hierarchical crystalline morphologies and orientation structures across the thickness direction in high-density polyethylene (HDPE) molded bars were investigated via a novel melt-penetrating processing method named multi-melt multi-injection molding (M3IM). The samples with various mold temperatures (20, 40 and 60℃) were prepared, and the effects of the external temperature profile on the evolution of crystalline microstructures were studied. With scanning electron microscopy (SEM), the transition of crystalline morphology from ring-banded structure to oriented lamellae was observed with decreasing mold temperature, and the oriented lamellae were formed at the sub-skin layer of the samples at the lowest mold temperature, which was further testified by differential scanning calorimetry (DSC). With the decline of mold temperature, the degree of orientation, obtained from two-dimensional small angle X-ray scattering (2D-SAXS), was increased and long periods rose a little. Thus, decreasing mold temperature was beneficial to the formation of orientation structures because the relaxation of chains was weakened.
2017, 35(1): 123-129
doi: 10.1007/s10118-017-1874-0
Abstract:
Controlled and homogeneous free-radical polymerization of acrylamide (AM) in aqueous phase was realized by using S,S'-bis(α,α'-dimethyl-α''-acetic acid)-trithiocarbonate as a reversible addition-fragmentation transfer (RAFT) agent. Linear increases in molecular weight with conversion and narrow molecular weight distribution were observed for polyacrylamide (PAM) throughout the polymerization. By this method, PAMs with controlled molecular weight (up to 1.0×106) and narrow molecular weight distribution (Mw/Mn<1.2) were prepared. This study provides an effective method for synthesis of PAMs with narrow molecular weight distribution under environmentally friendly conditions.
Controlled and homogeneous free-radical polymerization of acrylamide (AM) in aqueous phase was realized by using S,S'-bis(α,α'-dimethyl-α''-acetic acid)-trithiocarbonate as a reversible addition-fragmentation transfer (RAFT) agent. Linear increases in molecular weight with conversion and narrow molecular weight distribution were observed for polyacrylamide (PAM) throughout the polymerization. By this method, PAMs with controlled molecular weight (up to 1.0×106) and narrow molecular weight distribution (Mw/Mn<1.2) were prepared. This study provides an effective method for synthesis of PAMs with narrow molecular weight distribution under environmentally friendly conditions.
2017, 35(1): 130-140
doi: 10.1007/s10118-017-1887-8
Abstract:
Mg-Al mixed oxides with different Mg/Al molar ratio were prepared by thermal decomposition of hydrotalcite-like precursors at 500℃ for 5.0 h and used as catalysts for the transesterification of diphenyl carbonate with 1,4-butanediol to synthesize high-molecular-weight poly(butylene carbonate) (PBC). The structure-activity correlations of these catalysts in this transesterification process were discussed by means of various characterization techniques. It was found that the chain growth for the formation of PBC can only be obtained through connecting-OH and-OC(C) OC6H5 end-group upon removing the generated phenol, and the sample with Mg/Al molar ratio of 4.0 exhibited the best catalytic performance, giving PBC with Mw of 1.64×105 g/mol at 210℃ for 3.0 h. This excellent activity depended mainly on the specific surface area and basicity rather than pore structure or crystallite size of MgO.
Mg-Al mixed oxides with different Mg/Al molar ratio were prepared by thermal decomposition of hydrotalcite-like precursors at 500℃ for 5.0 h and used as catalysts for the transesterification of diphenyl carbonate with 1,4-butanediol to synthesize high-molecular-weight poly(butylene carbonate) (PBC). The structure-activity correlations of these catalysts in this transesterification process were discussed by means of various characterization techniques. It was found that the chain growth for the formation of PBC can only be obtained through connecting-OH and-OC(C) OC6H5 end-group upon removing the generated phenol, and the sample with Mg/Al molar ratio of 4.0 exhibited the best catalytic performance, giving PBC with Mw of 1.64×105 g/mol at 210℃ for 3.0 h. This excellent activity depended mainly on the specific surface area and basicity rather than pore structure or crystallite size of MgO.