2007 Volume 25 Issue 2
2007, 25(2): 113-118
Abstract:
By changing both the monomer composition and the polymer structure, we have varied the mechanical properties of resorbable polymers. The polymers were synthesized by ring-opening polymerization using L-lactide (LLA), ε-caprolactone (εCL), trimethylene carbonate (TMC) and 1,5-dioxepan-2-one (DXO) as monomers. Well-defined triblock copolymers, microblock copolymers and networks have been evaluated, and comparisons between them show that it is possible to tune the mechanical properties. Triblock copolymers with an amorphous middle block of poly(1,5-dioxepan-2-one) (PDXO) and semi-crystalline end-blocks of poly(ε-caprolactone) (PCL) were stronger and had a higher strain at break than triblock copolymers with poly(L-lactide) (PLLA) as end-blocks. Polymers with both DXO and TMC in the amorphous middle-block and PLLA as end-blocks showed a lower stress at break, but the material gained elasticity, a property which is very valuable in tissue engineering. Mechanical properties of networks, synthesized by a novel method, containing PDXO and PCL are also presented. Although it is difficult to compare them with the uncross-linked polymers, this is an additional way to modify and widen the properties.
By changing both the monomer composition and the polymer structure, we have varied the mechanical properties of resorbable polymers. The polymers were synthesized by ring-opening polymerization using L-lactide (LLA), ε-caprolactone (εCL), trimethylene carbonate (TMC) and 1,5-dioxepan-2-one (DXO) as monomers. Well-defined triblock copolymers, microblock copolymers and networks have been evaluated, and comparisons between them show that it is possible to tune the mechanical properties. Triblock copolymers with an amorphous middle block of poly(1,5-dioxepan-2-one) (PDXO) and semi-crystalline end-blocks of poly(ε-caprolactone) (PCL) were stronger and had a higher strain at break than triblock copolymers with poly(L-lactide) (PLLA) as end-blocks. Polymers with both DXO and TMC in the amorphous middle-block and PLLA as end-blocks showed a lower stress at break, but the material gained elasticity, a property which is very valuable in tissue engineering. Mechanical properties of networks, synthesized by a novel method, containing PDXO and PCL are also presented. Although it is difficult to compare them with the uncross-linked polymers, this is an additional way to modify and widen the properties.
2007, 25(2): 119-122
Abstract:
Poly(phenylacetylene)s bearing monosaccharide pendant groups are synthesized in high yields by [Rh(nbd)Cl]2 catalyst. The polymers have high molecular weights and give satisfactory spectroscopic data corresponding to their molecular structures. They are thermally quite stable (≥ 300#61616;C) and show strong circular dichroism signals in the visible spectral region owing to the helicity of the polyene backbone. The monosaccharide-containing polyacetylenes are cytophilic and can stimulate the growth of living cells.
Poly(phenylacetylene)s bearing monosaccharide pendant groups are synthesized in high yields by [Rh(nbd)Cl]2 catalyst. The polymers have high molecular weights and give satisfactory spectroscopic data corresponding to their molecular structures. They are thermally quite stable (≥ 300#61616;C) and show strong circular dichroism signals in the visible spectral region owing to the helicity of the polyene backbone. The monosaccharide-containing polyacetylenes are cytophilic and can stimulate the growth of living cells.
2007, 25(2): 123-135
Abstract:
Thermochromic polymers will play an extremely important role in the next future. The physical background of thermochromism and the state of development of thermochromic polymers based on light absorption effects are reported. In detail, the interactions between the polymer matrix and the thermochromic composite ― composed of leuco or indicator dyes ― are discussed on a molecular level. Thermochromic hydrogels with extremely high transparency, an outstanding switching behavior from colorless to colored or between different colors is presented. Preparation of thermosetting and thermoplastic polymers, including the resulting optical, and, for the first time, the mechanical properties are discussed in relation to matrix tuned high-resistant microcapsules.
Thermochromic polymers will play an extremely important role in the next future. The physical background of thermochromism and the state of development of thermochromic polymers based on light absorption effects are reported. In detail, the interactions between the polymer matrix and the thermochromic composite ― composed of leuco or indicator dyes ― are discussed on a molecular level. Thermochromic hydrogels with extremely high transparency, an outstanding switching behavior from colorless to colored or between different colors is presented. Preparation of thermosetting and thermoplastic polymers, including the resulting optical, and, for the first time, the mechanical properties are discussed in relation to matrix tuned high-resistant microcapsules.
2007, 25(2): 137-143
Abstract:
In this review, our recent work in phase inversion emulsification (PIE) for polymer (especially epoxy resin) waterborne dispersions is summarized. Based on experimental results about PIE process, the physical model is proposed which can guide the synthesis of the waterborne dispersions such as polymer/nanoparticle composite dispersion. In the presence of a latent curing catalyst, PIE can give a crosslinkable epoxy resin waterborne dispersion. The dispersions can form cured transparent coatings with some unique properties such as UV shielding. They are promising in functional coatings, waterborne resin matrices for composites, and sizing for high performance fibers.
In this review, our recent work in phase inversion emulsification (PIE) for polymer (especially epoxy resin) waterborne dispersions is summarized. Based on experimental results about PIE process, the physical model is proposed which can guide the synthesis of the waterborne dispersions such as polymer/nanoparticle composite dispersion. In the presence of a latent curing catalyst, PIE can give a crosslinkable epoxy resin waterborne dispersion. The dispersions can form cured transparent coatings with some unique properties such as UV shielding. They are promising in functional coatings, waterborne resin matrices for composites, and sizing for high performance fibers.
2007, 25(2): 145-152
Abstract:
Nano-sized polyacrylonitrile (PAN) particles were prepared under the catalytic effect of in situ developed CoCl2/EDTA complex with ammonium persulfate as the initiator in the absence of any added emulsifier. The emulsion polymerization was studied at varying concentrations of the initiator, monomer, complex and solvent over a temperature range of 30-70oC. The overall activation energy (Ea, 49.79 kJ/mol), energy of dissociation of initiator (Ed, 82.68 kJ/mol), number of micelles (0.163 x 1018) and the viscosity average molecular weight of the polymer were computed. The distribution of particle sizes was determined by transmission electron microscopy (TEM). It was found that the oil-in-water polymerization was stabilized by the presence of the CoCl2/EDTA in situ complex reducing the particle size into the nano order. The average diameters of PAN nano particles, obtained by TEM, were in the range of 50–150 nm at the maximum conversion. The experimental particle size was mainly dependent on the concentration of the complex and temperature.
Nano-sized polyacrylonitrile (PAN) particles were prepared under the catalytic effect of in situ developed CoCl2/EDTA complex with ammonium persulfate as the initiator in the absence of any added emulsifier. The emulsion polymerization was studied at varying concentrations of the initiator, monomer, complex and solvent over a temperature range of 30-70oC. The overall activation energy (Ea, 49.79 kJ/mol), energy of dissociation of initiator (Ed, 82.68 kJ/mol), number of micelles (0.163 x 1018) and the viscosity average molecular weight of the polymer were computed. The distribution of particle sizes was determined by transmission electron microscopy (TEM). It was found that the oil-in-water polymerization was stabilized by the presence of the CoCl2/EDTA in situ complex reducing the particle size into the nano order. The average diameters of PAN nano particles, obtained by TEM, were in the range of 50–150 nm at the maximum conversion. The experimental particle size was mainly dependent on the concentration of the complex and temperature.
2007, 25(2): 153-162
Abstract:
Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.
Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.
2007, 25(2): 163-170
Abstract:
In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.
In this study, two polymeric resins with different pore sizes were synthesized to study comparative adsorption of reactive black KNB dye. Styrene-divinylbenzene copolymer resin NG-8 has an average pore size of 3.82 nm, about half of that of polydivinylbenzene resin NG-7 (6.90 nm). NG-8 also has a surface acidity about 4 times that of NG-7, resulting in a much more negative surface of the former resin as compared to the latter at pH 6.05. Equilibrium adsorption of KNB was significantly influenced by the surface functionality of the resins, as evidenced by the observations that NG-8 adsorbed constantly less KNB than NG-7 and that the presence of CaCl2 enhanced the adsorption by both resins. The intra-particle diffusion appears to be the primary rate-limiting process. While the pores of both resins are accessible to KNB, the slower adsorption by NG-8 than by NG-7 suggests that the smaller pores of NG-8 further retard the intra-particle diffusion of KNB.
2007, 25(2): 171-179
Abstract:
The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by NMR, GPC, DSC, X-ray diffraction and polarizing optical microscope (POM). 1H-NMR investigation of the polymers indicates that the shish-kebab-structure has a strong ability to suppress the structural defects in the polymers. The polymers are enantiotropic liquid crystals. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The mesophase was identified by X-ray diffraction method. They showed not only a smectic LC phase, but also a strong green fluorescence in chloroform. The maximum absorption band of the “kebabs” of the two, 5-bis(4’-alkoxyphenyl)benzene at 280 nm did not appear in absorption spectra of the polymers. The same phenomena were also observed in the fluorescence spectra. These results imply that the polymers have formed a cross-conjugated uniform structure and achieved an extended π-conjugation polymer.
The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by NMR, GPC, DSC, X-ray diffraction and polarizing optical microscope (POM). 1H-NMR investigation of the polymers indicates that the shish-kebab-structure has a strong ability to suppress the structural defects in the polymers. The polymers are enantiotropic liquid crystals. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The mesophase was identified by X-ray diffraction method. They showed not only a smectic LC phase, but also a strong green fluorescence in chloroform. The maximum absorption band of the “kebabs” of the two, 5-bis(4’-alkoxyphenyl)benzene at 280 nm did not appear in absorption spectra of the polymers. The same phenomena were also observed in the fluorescence spectra. These results imply that the polymers have formed a cross-conjugated uniform structure and achieved an extended π-conjugation polymer.
2007, 25(2): 181-186
Abstract:
Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1#61485;2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.
Electrostatic interaction conductive hybrids were prepared in water/ethanol solution by the sol-gel process from inorganic sol containing carboxyl group and water-borne conductive polyaniline (cPANI). The electrostatic interaction hybrids film displayed 1#61485;2 orders of magnitude higher electrical conductivity in comparison with common hybrids film, showing remarkable conductivity stability against water soaking. Most strikingly, it displayed ideal electrochemical activity even in a solution with pH = 14, which enlarged the conducting polyaniline application window to strong alkaline media.
2007, 25(2): 187-195
Abstract:
The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM-41 and AlMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.
The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM-41 and AlMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.
2007, 25(2): 197-201
Abstract:
In this paper, we estimate the rate of contact formation between two residues in the interior of the proteins using the Szabo, Schulten, and Schulten formula with the probability distribution P(r) based on 375 proteins from PDB (Protein Data Bank). The probability distribution for residue pair in proteins is different from the Gaussian distribution, especially for short distance between two residues in proteins. The rate of contact formation in the interior of protein is discussed as a function of distance n (= |j i|) between two residues, and it decreases monotonically with n and follows the scaling relationship of k n with = 1.43 for the contact radius a = 0.40 nm and = 1.05 for a = 0.50 nm. The diffusion coefficient for the relative diffusion of two residues in the interior of proteins is estimated as D = 6.4 106 cm2/s, which is close to the result that is found for monomer diffusion.
In this paper, we estimate the rate of contact formation between two residues in the interior of the proteins using the Szabo, Schulten, and Schulten formula with the probability distribution P(r) based on 375 proteins from PDB (Protein Data Bank). The probability distribution for residue pair in proteins is different from the Gaussian distribution, especially for short distance between two residues in proteins. The rate of contact formation in the interior of protein is discussed as a function of distance n (= |j i|) between two residues, and it decreases monotonically with n and follows the scaling relationship of k n with = 1.43 for the contact radius a = 0.40 nm and = 1.05 for a = 0.50 nm. The diffusion coefficient for the relative diffusion of two residues in the interior of proteins is estimated as D = 6.4 106 cm2/s, which is close to the result that is found for monomer diffusion.
2007, 25(2): 203-206
Abstract:
A partition function and a complete thermodynamic description for pure polymer fluids have been investigated based on a self-avoid-walk lattice model. Caused by the introduction of Gibbs distribution into the Flory-Huggins theory, the partition function and the thermodynamic description depicted their dependence on temperature well. In the present study, we applied the theory to calculate polymer solubility parameters. The polymer solubility parameters predicted by our theory are well consistent with the experiment values.
A partition function and a complete thermodynamic description for pure polymer fluids have been investigated based on a self-avoid-walk lattice model. Caused by the introduction of Gibbs distribution into the Flory-Huggins theory, the partition function and the thermodynamic description depicted their dependence on temperature well. In the present study, we applied the theory to calculate polymer solubility parameters. The polymer solubility parameters predicted by our theory are well consistent with the experiment values.
2007, 25(2): 207-215
Abstract:
Aggregation process of isotactic poly(methyl methacrylate) (i-PMMA) has been studied extensively for many years, and considerable progress has been made in both experimental and theoretical studies. They are, however, seldom sustained by real-space observations of the underlying morphology. In this paper, the aggregation process of i-PMMA in concentrated acetone solutions and the fractal structure of the resulting three-dimensional clusters were characterized on the basis of real-space AFM observations of their two-dimensional projection. It was found that spherical multiple-chain particles formed upon collapse and aggregation of the involving chains as a whole during quenching the solution to room temperature. By keeping the solution at room temperature, the initially formed particles stick together upon contact to form larger particles through reassembling very slowly. The succeeding collision of the enlarged spherical particles leads to the formation of small clusters. These newly formed small clusters grow when they meet with other clusters or single Brownian particles. This leads to the formation of large clusters with fractal dimension of 1.95 0.05, which suggest a reaction-limited cluster aggregation of i-PMMA in a concentrated acetone solution. This is in accordance with the conclusion obtained by light scattering measurements.
Aggregation process of isotactic poly(methyl methacrylate) (i-PMMA) has been studied extensively for many years, and considerable progress has been made in both experimental and theoretical studies. They are, however, seldom sustained by real-space observations of the underlying morphology. In this paper, the aggregation process of i-PMMA in concentrated acetone solutions and the fractal structure of the resulting three-dimensional clusters were characterized on the basis of real-space AFM observations of their two-dimensional projection. It was found that spherical multiple-chain particles formed upon collapse and aggregation of the involving chains as a whole during quenching the solution to room temperature. By keeping the solution at room temperature, the initially formed particles stick together upon contact to form larger particles through reassembling very slowly. The succeeding collision of the enlarged spherical particles leads to the formation of small clusters. These newly formed small clusters grow when they meet with other clusters or single Brownian particles. This leads to the formation of large clusters with fractal dimension of 1.95 0.05, which suggest a reaction-limited cluster aggregation of i-PMMA in a concentrated acetone solution. This is in accordance with the conclusion obtained by light scattering measurements.
2007, 25(2): 217-220
Abstract:
Ordered macroporous titania photonic crystals (PCs) and photonic balls were fabricated by functional modified polymer colloidal crystals. The TiO2 PCs and balls formed through this method exhibit no cracks and lacunae in large areas on their surface and their inner structures
Ordered macroporous titania photonic crystals (PCs) and photonic balls were fabricated by functional modified polymer colloidal crystals. The TiO2 PCs and balls formed through this method exhibit no cracks and lacunae in large areas on their surface and their inner structures
2007, 25(2): 221-226
Abstract:
Ultraviolet (UV)-induced graft polymerization of acrylamide (AAm) on polypropylene substrates was successfully conducted using dibenzyl trithiocarbonate (DBTTC) as photoinitiator. It was confirmed by chemical analysis and surface morphology observation with attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. A possible mechanism for this graft process was presented, which suggested that, under UV irradiation, the C=S bond in DBTTC could split and abstract a hydrogen from the polypropylene surface and a surface free radical was then formed, and initiated the graft polymerization of AAm.
Ultraviolet (UV)-induced graft polymerization of acrylamide (AAm) on polypropylene substrates was successfully conducted using dibenzyl trithiocarbonate (DBTTC) as photoinitiator. It was confirmed by chemical analysis and surface morphology observation with attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. A possible mechanism for this graft process was presented, which suggested that, under UV irradiation, the C=S bond in DBTTC could split and abstract a hydrogen from the polypropylene surface and a surface free radical was then formed, and initiated the graft polymerization of AAm.