2005 Volume 23 Issue 2
2005, 23(2): 123-135
Abstract:
The effect of sintering dispersed dispersion and nano-emulsion particles of high molecular weight polytetrafluoroethylene (PTFE) on a substrate as a function of “melt” time and temperature is described. Folded chain single crystals parallel to the substrate and as ribbons on-edge (with double striations), as well as bands, are produced for longer sintering times; particle merger and diffusion of individual molecules, crystallizing as folded chain, single (or few) molecule, single crystals when “trapped” on the substrate by cooling occur for shorter sintering times. It is suggested the observed structures develop with sintering time, in a mesomorphic melt. The structure of the nascent particles is also discussed.
The effect of sintering dispersed dispersion and nano-emulsion particles of high molecular weight polytetrafluoroethylene (PTFE) on a substrate as a function of “melt” time and temperature is described. Folded chain single crystals parallel to the substrate and as ribbons on-edge (with double striations), as well as bands, are produced for longer sintering times; particle merger and diffusion of individual molecules, crystallizing as folded chain, single (or few) molecule, single crystals when “trapped” on the substrate by cooling occur for shorter sintering times. It is suggested the observed structures develop with sintering time, in a mesomorphic melt. The structure of the nascent particles is also discussed.
2005, 23(2): 137-145
Abstract:
The effect of sintering dispersed and bulk, low molecular weight (Mn = 50,000 Da), nano-emulsion polytetrafluoroethylene (PTFE) particles near their melting point is described. With the nascent particles consisting of ca. 75 nm diameter, hexagonal, single crystals, sintering at, e.g., 350℃, results, initially, in merger of neighboring particles, followed by individual molecular motion on the substrate and the formation of folded chain, lamellar single crystals and spherulites, and on-edge ribbons. It is suggested these structures develop, with time, in the mesomorphic “melt”. Sintering of the bulk resin yields extended chain, band structures, as well as folded chain lamellae; end-surface to end-surface merger, possibly by end-to-end polymerization, occurs with increasing time.
The effect of sintering dispersed and bulk, low molecular weight (Mn = 50,000 Da), nano-emulsion polytetrafluoroethylene (PTFE) particles near their melting point is described. With the nascent particles consisting of ca. 75 nm diameter, hexagonal, single crystals, sintering at, e.g., 350℃, results, initially, in merger of neighboring particles, followed by individual molecular motion on the substrate and the formation of folded chain, lamellar single crystals and spherulites, and on-edge ribbons. It is suggested these structures develop, with time, in the mesomorphic “melt”. Sintering of the bulk resin yields extended chain, band structures, as well as folded chain lamellae; end-surface to end-surface merger, possibly by end-to-end polymerization, occurs with increasing time.
2005, 23(2): 147-153
Abstract:
The evolution and the origin of “solid-like state” in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time, temperature and deformation dependencies of the “solid-like” state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA, the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.
The evolution and the origin of “solid-like state” in molten polymer/clay nanocomposites are studied. Using polypropylene/clay hybrid (PPCH) with sufficient maleic anhydride modified PP (PP-MA) as compatibilizer, well exfoliation yet solid-like state was achieved after annealing in molten state. Comprehensive linear viscoelasticity and non-linear rheological behaviors together with WAXD and TEM are studied on PPCH at various dispersion stages focusing on time, temperature and deformation dependencies of the “solid-like” state in molten nanocomposites. Based on these, it is revealed that the solid-structure is developed gradually along with annealing through the stages of inter-layer expansion by PP-MA, the diffusion and association of exfoliated silicate platelets, the formation of band/chain structure and, finally, a percolated clay associated network, which is responsible for the melt rigidity or solid-like state. The network will be broken down by melt frozen/crystallization and weakened at large shear or strong flow and, even more surprisingly, may be disrupted by using trace amount of silane coupling agent which may block the edge interaction of platelets. The solid-like structure causes characteristic non-linear rheological behaviors, e.g. residual stress after step shear, abnormal huge stress overshoots in step flows and, most remarkably, the negative first normal stress functions in steady shear or step flows. The rheological and structural arguments challenge the existing models of strengthened entangled polymer network by tethered polymer chains connecting clay particles or by chains in confined melts or frictional interaction among tactoids. A scheme of percolated networking of associated clay platelets, which may in band form of edge connecting exfoliated platelets, is suggested to explain previous experimental results.
2005, 23(2): 155-158
Abstract:
Polymer chain coils with entanglement is a crucial scale of structures in polymer materials since their relaxation times are matching practical processing times. Based on the phenomenological model of polymer chain coils and a new finite element approach, we have designed out a computer software including solver, pre- and post- processing modules, and developed a digital analysis technology for the morphology of polymer chain coils in flow fields (DAMPC). Using this technology we may simulate the morphology development of chain coils in various flow fields, such as simple shear flow, elongational flow, and any complex flow at transient or steady state. The applications made up to now show that the software predictions are comparable with experimental results.
Polymer chain coils with entanglement is a crucial scale of structures in polymer materials since their relaxation times are matching practical processing times. Based on the phenomenological model of polymer chain coils and a new finite element approach, we have designed out a computer software including solver, pre- and post- processing modules, and developed a digital analysis technology for the morphology of polymer chain coils in flow fields (DAMPC). Using this technology we may simulate the morphology development of chain coils in various flow fields, such as simple shear flow, elongational flow, and any complex flow at transient or steady state. The applications made up to now show that the software predictions are comparable with experimental results.
2005, 23(2): 159-163
Abstract:
Entropic contribution to the interaction parameter ceff in the model incompressible polymer/oligomer system is calculated by the lattice cluster theory (LCT). It is found that in the oligomer solvent, there exists a wide concentration range that the non-combinatorial “entropic interaction” term ceff f1f2 perceptibly counteracts the mean field combinary entropy DSMF. With the increase of the solvent size, both ceff and the ratio ceff f1f2 / DSMF first reach their maximum and finally become trivially to zero. It is worth noting that no any demixing was found in the current calculation. This makes the controversial idea “entropically driven demixing” even elusive. However, we propose that further work on compressible polymer solution with structured monomer will witness the demixing owning to an increased configurational correlation.
Entropic contribution to the interaction parameter ceff in the model incompressible polymer/oligomer system is calculated by the lattice cluster theory (LCT). It is found that in the oligomer solvent, there exists a wide concentration range that the non-combinatorial “entropic interaction” term ceff f1f2 perceptibly counteracts the mean field combinary entropy DSMF. With the increase of the solvent size, both ceff and the ratio ceff f1f2 / DSMF first reach their maximum and finally become trivially to zero. It is worth noting that no any demixing was found in the current calculation. This makes the controversial idea “entropically driven demixing” even elusive. However, we propose that further work on compressible polymer solution with structured monomer will witness the demixing owning to an increased configurational correlation.
2005, 23(2): 165-170
Abstract:
Polyolefins that bear a chiral side chain (typically an isobutyl group) experience a so-called macromolecular amplification of chirality: the chiral side-chain induces a slight preference for either tg or tg- main chain conformation. This slight conformational bias is amplified cooperatively along the chain, and results in preferred chirality of the main chain helical conformations. As a result, these polymers display a liquid-crystal (LC) phase both in solution and, in the melt as a transient phase on the way to crystallization. The existence of two processes (melt-LC and LC-crystal transitions) results in unconventional behaviors that were first analyzed by Pino and collaborators back in 1975. These polymers also offer a means to test the structural consequences of recently introduced crystallization schemes. These schemes postulate the formation of a transient liquid-crystal phase as a general scheme for polymer crystallization.
Polyolefins that bear a chiral side chain (typically an isobutyl group) experience a so-called macromolecular amplification of chirality: the chiral side-chain induces a slight preference for either tg or tg- main chain conformation. This slight conformational bias is amplified cooperatively along the chain, and results in preferred chirality of the main chain helical conformations. As a result, these polymers display a liquid-crystal (LC) phase both in solution and, in the melt as a transient phase on the way to crystallization. The existence of two processes (melt-LC and LC-crystal transitions) results in unconventional behaviors that were first analyzed by Pino and collaborators back in 1975. These polymers also offer a means to test the structural consequences of recently introduced crystallization schemes. These schemes postulate the formation of a transient liquid-crystal phase as a general scheme for polymer crystallization.
2005, 23(2): 187-196
Abstract:
The time evolution of oxygen plasma treated polystyrene (PS) surfaces was investigated upon storing them in the air under controlled humidity conditions. The methods of water contact angle, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, and atomic force microscopy (AFM) were used to infer the surface properties and structure. Chemical groups containing oxygen were formed on the PS surface with the plasma treatment, demonstrated by water contact angle and XPS. The surface polarity decayed markedly on time, as assessed by steady increase in the water contact angle as a function of storage time, from zero to around 60°. The observed decay is interpreted as arising from surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces, which is in contact with air. On the other hand, XPS results show that the chemical composition in the first 3 nm surface layer is unaffected by the surface aging, and the depth profile of oxygen is essentially the same with time. A possible change of PS surface roughness was examined by AFM, and it showed that the increase of water contact angle during surface aging could not be attributed to surface roughness. Thus, it is concluded that surface aging is attributable to surface reorganization and the motion of oxygen containing groups is confined within the XPS probing depth. SFG spectroscopy, which is intrinsically interface-specific, was used to detect the chemical structure of PS surface at the molecular level after various aging times. The results are interpreted as follows. During the aging of the plasma treated PS surfaces, the oxygen containing groups undergo reorientation processes toward the polymer bulk and/or parallel to the surface, while the CH2 moiety stands up on the PS surface. Our results indicate that the surface configuration changes do not require large length scale segmental motions or migration of macromolecules. Motions that are responsible for surface configuration changes could be relatively small rotational motions. The aging behaviors under different relative humidity conditions were shown to be similar from 18% to 91%, whereas the kinetics of surface polarity decays were faster in higher relative humidity. Here, the surface rearrangement of polystyrene films that were previously treated by oxygen plasma and aged, and was investigated in terms of contact angle after the water immersion. The contact angles of the water-immersed samples were found to change and approach the initial values before the immersion asymptotically.
The time evolution of oxygen plasma treated polystyrene (PS) surfaces was investigated upon storing them in the air under controlled humidity conditions. The methods of water contact angle, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, and atomic force microscopy (AFM) were used to infer the surface properties and structure. Chemical groups containing oxygen were formed on the PS surface with the plasma treatment, demonstrated by water contact angle and XPS. The surface polarity decayed markedly on time, as assessed by steady increase in the water contact angle as a function of storage time, from zero to around 60°. The observed decay is interpreted as arising from surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces, which is in contact with air. On the other hand, XPS results show that the chemical composition in the first 3 nm surface layer is unaffected by the surface aging, and the depth profile of oxygen is essentially the same with time. A possible change of PS surface roughness was examined by AFM, and it showed that the increase of water contact angle during surface aging could not be attributed to surface roughness. Thus, it is concluded that surface aging is attributable to surface reorganization and the motion of oxygen containing groups is confined within the XPS probing depth. SFG spectroscopy, which is intrinsically interface-specific, was used to detect the chemical structure of PS surface at the molecular level after various aging times. The results are interpreted as follows. During the aging of the plasma treated PS surfaces, the oxygen containing groups undergo reorientation processes toward the polymer bulk and/or parallel to the surface, while the CH2 moiety stands up on the PS surface. Our results indicate that the surface configuration changes do not require large length scale segmental motions or migration of macromolecules. Motions that are responsible for surface configuration changes could be relatively small rotational motions. The aging behaviors under different relative humidity conditions were shown to be similar from 18% to 91%, whereas the kinetics of surface polarity decays were faster in higher relative humidity. Here, the surface rearrangement of polystyrene films that were previously treated by oxygen plasma and aged, and was investigated in terms of contact angle after the water immersion. The contact angles of the water-immersed samples were found to change and approach the initial values before the immersion asymptotically.
2005, 23(2): 203-210
Abstract:
Composite polyurethane (PU)-SiO2 hollow fiber membranes were successfully prepared via optimizing the technique of dry-jet wet spinning, and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure (PWF-TP) for the first time. The origin for this phenomenon was analyzed on the basis of membrane structure and material characteristics. The effects of SiO2 content on the structure and properties of membrane were investigated. The experimental results indicated that SiO2 in membrane created a great many interfacial micro-voids and played an important role in pressure-responsibility, PWF and rejection of membrane: with the increase of SiO2 content, the ability of membrane recovery weakened, PWF increased, and rejection decreased slightly.
Composite polyurethane (PU)-SiO2 hollow fiber membranes were successfully prepared via optimizing the technique of dry-jet wet spinning, and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure (PWF-TP) for the first time. The origin for this phenomenon was analyzed on the basis of membrane structure and material characteristics. The effects of SiO2 content on the structure and properties of membrane were investigated. The experimental results indicated that SiO2 in membrane created a great many interfacial micro-voids and played an important role in pressure-responsibility, PWF and rejection of membrane: with the increase of SiO2 content, the ability of membrane recovery weakened, PWF increased, and rejection decreased slightly.
2005, 23(2): 211-217
Abstract:
Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation were studied in the selective hydrogenation of unsaturated aldehydes, o-chloronitrobenzene and the hydrogenation of alkenes. The results show that nanosized metal particles synthesized by microwave irradiation have similar catalytic performance in selective hydrogenation of unsaturated aldehydes, better selectivity to o-chloroaniline in hydrogenation of o-chloronitrobenzene and higher catalytic activities in hydrogenation of alkenes, compared with metal clusters prepared by conventional heating. The same apparent activation energy (Ea = 29 kJ mol-1) for hydrogenation of 1-heptene catalyzed with platinum nanoparticles prepared by both heating modes implied that the reaction followed the same mechanism.
Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation were studied in the selective hydrogenation of unsaturated aldehydes, o-chloronitrobenzene and the hydrogenation of alkenes. The results show that nanosized metal particles synthesized by microwave irradiation have similar catalytic performance in selective hydrogenation of unsaturated aldehydes, better selectivity to o-chloroaniline in hydrogenation of o-chloronitrobenzene and higher catalytic activities in hydrogenation of alkenes, compared with metal clusters prepared by conventional heating. The same apparent activation energy (Ea = 29 kJ mol-1) for hydrogenation of 1-heptene catalyzed with platinum nanoparticles prepared by both heating modes implied that the reaction followed the same mechanism.
2005, 23(2): 219-225
Abstract:
Photoinitiated inverse emulsion polymerization of sodium acrylate (AANa) in kerosene was carried out at room or lower temperature, using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as the initiator. Kinetic investigations indicated that the polymerization could be completed in about 30 min and produce polymer with high molecular weight (106~107). It was found that monomer droplets are the main sites for the polymerization (nucleation). With the increase of DMPA concentration, polymerization rate (Rp) reaches a maximum value while molecular weight of the produced polymer has an adverse result, but the dependence of Rp on incident light intensity is similar. Influences of other parameters such as monomer concentration, emulsifier content and reaction temperature, etc. were also studied. At lower pH values of water phase, Rp depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomers. At higher pH, Rp shows a slight dependence on pH.
Photoinitiated inverse emulsion polymerization of sodium acrylate (AANa) in kerosene was carried out at room or lower temperature, using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as the initiator. Kinetic investigations indicated that the polymerization could be completed in about 30 min and produce polymer with high molecular weight (106~107). It was found that monomer droplets are the main sites for the polymerization (nucleation). With the increase of DMPA concentration, polymerization rate (Rp) reaches a maximum value while molecular weight of the produced polymer has an adverse result, but the dependence of Rp on incident light intensity is similar. Influences of other parameters such as monomer concentration, emulsifier content and reaction temperature, etc. were also studied. At lower pH values of water phase, Rp depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomers. At higher pH, Rp shows a slight dependence on pH.
2005, 23(2): 227-234
Abstract:
The effect of pan-milling on morphological structure, processability and properties of PVC was studied through SEM, FTIR, granulometer, GPC and mechanical properties test in the hope of gaining ease in operation, needless of plasticizers, a clean and efficient route for improving the processability of PVC through stress-induced reactions, fulfilling the idea of “plasticizing PVC by itself”. The experimental results show that during pan-milling at ambient temperature, within 2-3 min, the microcrystalline structure of PVC becomes indistinct, the grain size of PVC is reduced from 130-160 mm to 1-50 mm, the molecular weight of PVC is slightly decreased, the variation of molecular weight distribution is indistinct, the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from 18.2-22.1 Nm to 14.7-18.4 Nm, respectively, the processability of PVC is markedly improved, and the mechanical properties get enhanced too.
The effect of pan-milling on morphological structure, processability and properties of PVC was studied through SEM, FTIR, granulometer, GPC and mechanical properties test in the hope of gaining ease in operation, needless of plasticizers, a clean and efficient route for improving the processability of PVC through stress-induced reactions, fulfilling the idea of “plasticizing PVC by itself”. The experimental results show that during pan-milling at ambient temperature, within 2-3 min, the microcrystalline structure of PVC becomes indistinct, the grain size of PVC is reduced from 130-160 mm to 1-50 mm, the molecular weight of PVC is slightly decreased, the variation of molecular weight distribution is indistinct, the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from 18.2-22.1 Nm to 14.7-18.4 Nm, respectively, the processability of PVC is markedly improved, and the mechanical properties get enhanced too.
2005, 23(2): 197-202
Abstract:
Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene) (poly(CMSt-co-DVB)) microspheres were prepared by distillation-precipitation copolymerization of chloromethylstyrene (CMSt) and divinylbenzene (DVB) in neat acetonitrile. The polymer particles had clean surfaces due to the absence of any added stabilizer. The size of the particles ranges from 2.59 mm to 3.19 mm and with mono-dispersity around 1.002-1.014. The effects of monomer feed in copolymerization on the microsphere formation were described. The polymer microspheres were characterized by SEM and chlorinity elemental analysis.
Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene) (poly(CMSt-co-DVB)) microspheres were prepared by distillation-precipitation copolymerization of chloromethylstyrene (CMSt) and divinylbenzene (DVB) in neat acetonitrile. The polymer particles had clean surfaces due to the absence of any added stabilizer. The size of the particles ranges from 2.59 mm to 3.19 mm and with mono-dispersity around 1.002-1.014. The effects of monomer feed in copolymerization on the microsphere formation were described. The polymer microspheres were characterized by SEM and chlorinity elemental analysis.