C6H6与B12H122-的分子轨道和核独立化学位移计算——推荐一个普适性的计算化学实验
刘吉英, 李泽华, 张文静, 魏东辉
【大学化学】doi: 10.12461/PKU.DXHX202406085
苯(C6H6)与二十面体硼烷(B12H122-)是具有π-和σ-芳香性分子的典型代表。本实验采用密度泛函理论(DFT)分别计算二者的分子轨道图及核独立化学位移值,引导学生了解计算化学研究芳香性的一般方法,构建对电子离域结构的直观认知。通过对比分析,帮助学生加深对芳香性的理解,达到巩固基础,拓宽视野,提升创新技能的目的。实验普适性好,易于推广。
关键词: C6H6, B12H122-, 分子轨道, 核独立化学位移(NICS), σ-芳香性, π-芳香性
Ti3C2/In4SnS8肖特基异质结用于高效光催化生成H2O2和Cr(Ⅵ)还原
周彤, 刘雪, 赵亮, 乔明涛, 雷琬莹
【物理化学学报】doi: 10.3866/PKU.WHXB202309020
人工光合成是一种先进的技术,可以利用太阳能作为唯一驱动能源,将水和氧气转化成双氧水(H2O2)。然而,目前常用的光催化体系的性能受制于其光吸收能力有限,载流子分离效率低以及表面反应能力弱等问题。在本文研究中,采用原位水热法,成功地在少层Ti3C2片表面生长厚度为5–10 nm的立方相In4SnS8 nm片(Eg = 2.16 eV),形成了一种具有三明治结构的Ti3C2/In4SnS8纳米复合材料。Ti3C2和In4SnS8之间较大的界面面积及紧密的界面接触有助于载流子在体系中的迁移。X射线衍射仪(XRD)、透射电子显微镜(TEM),和X射线光电子能谱(XPS)证实了Ti3C2/In4SnS8纳米复合材料的成功构建。能带结构包括价带顶端和Mott-Schottky曲线表明此2D/2D异质结形成了肖特基异质结,有助于载流子的快速分离,并从In4SnS8转移至Ti3C2表面,避免了电子从Ti3C2回流至In4SnS8。荧光光谱分析和光/电测试结果证明了Ti3C2和In4SnS8的复合有效抑制了载流子的复合。其中,7 wt% Ti3C2/In4SnS8复合材料表现出最佳的可见光催化性能,H2O2生成速率为1.998 µmol∙L−1∙min‒1,比单独In4SnS8高2.2倍。此外,Ti3C2/In4SnS8表现出多功能应用,对Cr(Ⅵ)的还原速率为19.8 × 10−3 min‒1,比单一In4SnS8性能高约4倍。Ti3C2/In4SnS8复合材料在经过五次循环实验测试后表现优异的稳定性,其形貌、晶体结构和组成在反应后未发生改变。通过深层次的分析包括捕获实验、气氛实验和电子顺磁共振,证明了H2O2生成的途径包括两种:一种是两步单电子还原路径,另一种是一步两电子水氧化路径。本研究为设计高效、多功能的催化体系提供了一种新的思路。
关键词: Ti3C2, In4SnS8, 光催化, 生成H2O2, Cr(Ⅵ)还原
熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2
陈郭强, 郑子璇, 钟威, 王国宏, 吴新鹤
【物理化学学报】doi: 10.3866/PKU.WHXB202406021
为避免使用当前g-C3N4纳米片合成策略中的外加辅助,如模板、强酸、强碱等,本研究设计了一种g-C3N4熔融中间体运输的创新模式,在没有任何外加物质辅助情况下,成功一步合成富含氨基g-C3N4纳米片。该创新模式具体包括先将三聚氰胺放置在倒置坩埚的顶部平台上,随后进行一步煅烧。在煅烧过程中,三聚氰胺及其随后形成的g-C3N4中间体转变为熔融状态,并沿倒置坩埚外表面逐渐向下流动。这种熔融中间体运输模式可以有效减少其团聚,并使其依次分批聚合成富含氨基的g-C3N4纳米片。此外,所得富氨基g-C3N4纳米片的光催化产H2O2速率显著提高,约为85.8 μmol·L–1·h–1,是传统块体g-C3N4的2倍,这主要是因为除了其纳米片结构具有较大的比表面积外,富氨基结构可以有效增强对O2原料和*OOH中间体的吸附,并加速*OOH高效转化为H2O2。该探究提供了一种创新模式来合成富含氨基的g-C3N4纳米片,并深入探究了其光催化机理。
关键词: 光催化, 氮化碳纳米片, 富氨基, 中间体运输, 产过氧化氢
K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成
钟威, 郑丹, 欧远新, 孟爱云, 苏耀荣
【物理化学学报】doi: 10.3866/PKU.WHXB202406005
石墨相氮化碳(g-C3N4)在光催化制备过氧化氢(H2O2)领域有巨大潜力。然而,低的两电子氧还原活性严重限制了g-C3N4的光催化产H2O2效率。在这项研究中,我们通过两步煅烧法在KI晶体表面重新晶化传统g-C3N4材料,合成了钾掺杂的高晶化g-C3N4光催化剂(CN-K)。所制备的CN-K光催化材料具有更高的面间结晶度、更窄的禁带宽度和更小的颗粒尺寸(大约20到50纳米)。更重要的是,掺入的钾原子作为优异的催化位点可以增强O2吸附和稳定*OOH中间体,从而提高钾掺杂高晶化g-C3N4光催化剂的两电子氧还原活性。其中CN-K(1:6)样品具有显著增强的光催化产H2O2速率(7.8 mmol·L-1·h-1),且在420 nm下的表观量子效率为5.17%,光催化活性是传统块状g-C3N4样品的220倍。这项研究不仅揭示了杂原子提高g-C3N4光催化剂两电子氧还原活性的机理,而且为设计高效g-C3N4基光催化剂提供了新的见解。
关键词: 光催化产H2O2, 氮化碳, 钾掺杂, 高选择性两电子氧还原
增强g-C3N4@BN范德华异质结界面上的三重态电子转移增强光催化合成H2O2
吴琦, 王长华, 李莹莹, 张昕彤
【物理化学学报】doi: 10.1016/j.actphy.2025.100107
范德华异质结因其优异的电荷分离能力和在调节电子特性方面的显著灵活性而展现出卓越优势。本研究探讨了二维/二维(2D/2D) g-C3N4@BN范德华异质结在光催化合成过氧化氢(H2O2)中的潜在应用。基于该异质结,我们深入研究了三重态激子与单线态氧之间的能量转移过程,强调了催化剂结构对电荷分离和三重态电子稳定生成的重要性。通过构建电荷转移路径,异质结内的内置电场有效驱动了电荷载流子的定向迁移,显著延长了其寿命。我们采用了两种修饰策略来调控催化剂的激发态电子特性,包括调整层间排列以增强电荷传输能力,以及卤素修饰以提高材料的光响应性。实验验证表明,与CN相比,代表性的氯化-CN@BN有效抑制了激子复合,将激发态载流子的寿命延长了3.52倍。此外,H2O2的光催化产率提高了2.73倍。本研究为开发新型光催化剂提供了理论基础,并启发了从氧气直接合成H2O2的催化剂设计。
关键词: 2D/2D异质结界面, 光催化合成H2O2, 三重态电子转移, 能量转移
两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2
陈恒, 聂龙辉, 徐凯, 杨毅琼, 方彩红
【物理化学学报】doi: 10.3866/PKU.WHXB202406019
以水和氧气为原料,光催化产过氧化氢(H2O2)具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C3N4)本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C3N4纳米片光催化剂。煅烧条件对g-C3N4的结构属性和催化性能有显著影响。两步焙烧和1 ℃·min-1最佳升温速率制备的样品(CN-T-1)表现出显著提高的光催化产H2O2效率(3177.0 µmol·g-1·h-1),为一步焙烧和1 ℃·min-1升温速率制备的样品(CN-O-1)(858.6 µmol·g-1·h-1)的3.7倍,高于文献报导的纯g-C3N4产H2O2效率。CN-T-1在5次循环使用中H2O2产率先略有下降,后基本保持不变,表现出良好的稳定性。相较于CN-O-1,CN-T-1增强的催化性能归因于更大的比表面积、增强的结晶性、更高氧吸附能力和光生载流子分离效率、更长的载流子寿命,以及超薄片层使其具有更大的带隙(3.07 eV, 比CN-O-1大+0.26 eV)和更正的价带位置。•O2-自由基被证实为主要的活性物种。CN-T-1光催化产H2O2被证实为两步单电子ORR路径(O2 + e- → •O2- → H2O2)。
关键词: 光催化, H2O2制备, g-C3N4纳米片, 光催化机理
C60-MoP-C纳米花范德瓦耳斯异质结及其电催化析氢性能
李文江, 关平丽, 余锐, 程源晟, 魏先文
【无机化学学报】doi: 10.11862/CJIC.20230289
采用气固法制备了磷化钼-碳纳米花(MoP-CFs),通过简单的超声自组装将C60修饰在MoP-CFs表面,形成范德瓦耳斯异质结。研究其电催化析氢性能发现,C60的修饰能够有效降低电催化析氢过电位。其中,10% C60-MoP-CFs样品(10%为C60的质量分数)表现出最佳催化活性,在酸性和碱性条件下达到10 mA·cm-2的电流密度时,所需要的过电位分别为158和157 mV,并且具有至少20 h的电催化稳定性。C60与MoP-CFs之间强电子耦合作用促进电子由C60迁移到MoP-CFs表面,有助于减小电荷传输阻力,加快电催化析氢界面反应动力学过程。
关键词: 富勒烯, 能量转换, 多相催化, 电化学制氢, 绿色化学
在过渡金属催化剂上的CC键断裂以实现生物质的升级
卢卓然, 李圣凯, 逯宇轩, 王双印, 邹雨芹
【物理化学学报】doi: 10.3866/PKU.WHXB202306003
将当前能源生产和消费结构从过度依赖化石能源转变为高效利用可再生能源,是解决能源危机、实现碳中和的有效途径。生物质是最有前途的可再生能源之一,可以取代化石燃料以获得有价值的有机化合物。近年来,大力利用生物质能已成为一种必然趋势。用于生物质转化的传统热化学催化方法通常需要高温、高压等恶劣条件,甚至还需要外部氢或氧源。相比之下,在相对温和的条件下进行的生物质有机分子电催化转化为生产高价值化学品提供了一种绿色高效的策略。特别是,通过C―C键裂解将生物质衍生的分子转化为高价值的短链化学品至关重要。近年来,大量的研究证明过渡金属(TM)电催化剂由于其丰富的三维电子结构和独特的eg轨道增强了过渡金属-氧之间的共价键合,从而在有机物的C―C键断裂中起着至关重要的作用。此外,TM电催化剂的配位环境或电子结构会影响产物的选择性。毫无疑问,明确的反应活性位点和途径有助于深入理解催化剂结构与反应活性之间的构效关系。然而,TM电催化剂介导的生物质衍生有机分子的C―C键裂解反应用于生物质升级的研究目前尚处于起步阶段,其反应机理和催化反应过程尚不清楚。因此,有必要在原子水平上系统地了解电催化剂在C―C键裂解过程中的作用。在本综述中,我们首先依次介绍了广泛研究的TM电催化剂介导的生物质衍生有机分子(包括甘油、环己醇、木质素和糠醛)的C―C键裂解反应,并给出了一些典型的例子和相应的反应途径。然后,系统回顾了过渡金属化合物催化C―C键裂解的反应机理,揭示了界面行为,并构建了TM电催化剂的结构与裂解反应活性之间的构效关系。最后,我们简要总结了上述内容,并强调了在TM电催化剂上研究C―C键裂解的挑战和展望。我们期望这项工作可以为生物质的可控转化和合理设计C―C键裂解的TM电催化剂提供指导。
关键词: 电催化生物质升级, C―C键断裂, 电催化, 过渡金属催化剂
光催化H2O2生产的挑战与前景
SayedMahmoud, 李瀚, 别传彪
【物理化学学报】doi: 10.1016/j.actphy.2025.100117
过氧化氢(H2O2)是100种最重要的化学品之一,广泛应用于漂白、消毒和合成化学等行业。最近,它被用作直接燃料电池的燃料。当前的H2O2生产依赖于苛刻的蒽醌氧化法。从环境、可持续性和经济角度来看,光催化H2O2生产是一种更有利的替代方法。该过程需要水和分子氧作为输入,并以阳光为唯一能源。尽管有这些优点,该技术的实际应用仍然具有挑战性。最常见的瓶颈是光催化剂的不足、上坡热力学、缓慢的过程动力学以及竞争性反应和逆向反应。本文讨论了这些局限性,并重点提出了提高效率和选择性的建议观点,旨在为大规模H2O2光生产铺平道路。
关键词: 热力学, 动力学, 逆反应, 副反应, 过氧化氢
杂多酸H3PW12O40高效催化MgH2储氢
于冉, 胡晨, 郭锐利, 刘若男, 夏力行, 杨岑玉, 水江澜
【物理化学学报】doi: 10.3866/PKU.WHXB202308032
本文研究了杂多酸对储氢材料的催化效应,通过机械球磨法制备MgH2-xH3PW12O40 (x = 7%、10%、13%,质量分数)复合物样品,与纯的球磨MgH2对比,展示了杂多酸H3PW12O40对MgH2储氢动力学的提升作用。其中,MgH2-10H3PW12O40的放氢活化能比纯MgH2降低了46.23 kJ∙mol−1,可在250 ℃、1 min内吸收6.25%的氢,在300 ℃、15 min内释放6.54%的氢气,而同等温度下MgH2在30 min内仅释放1.2%氢。即使是在较低的温度100 ℃,MgH2-10H3PW12O40也可在1 h内吸收5%的氢,而MgH2只能吸收0.9%的氢。结构表征结果表明H3PW12O40分子在球磨和储氢过程中被转变为WO3和W簇,其作用一方面是催化Mg―H键、H―H键的断裂,另一方面是促进MgH2颗粒在球磨过程中细化并抑制其团聚长大。该研究开创了多酸分子在储氢领域的催化应用。
关键词: 储氢材料, 氢化镁, 磷钨酸, 催化, 动力学性能

出版年份

相关作者

相关热词

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 共:6页
  • 跳转
  • Go