Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries
Qingyan JIANG, Yanyong SHA, Chen CHEN, Xiaojuan CHEN, Wenlong LIU, Hao HUANG, Hongjiang LIU, Qi LIU
【无机化学学报】doi: 10.11862/CJIC.20240004
A novel one-dimensional (1D) polycarbonyl coordination polymer [Cu(BGPD)(DMA)(H2O)]·DMA (named Cu-BD, H2BGPD=N, N′-bis(glycinyl)pyromellitic diimide; DMA=dimethylacetamide) was synthesized, and evaluated as a cathode material for lithium - ion batteries (LIBs) for the first time. The electrochemical performance study revealed that the Cu-BD cathode exhibited better cycling stability and a specific capacity of 50 mAh·g-1 after 100 cycles at a current density of 50 mA·g-1. The study of the reaction mechanism for the Cu-BD electrode discloses that both BGPD2- ligands and Cu(Ⅱ) ions may take part in the electron-transfer process during charging and discharging.
关键词: Cu(Ⅱ), coordination polymer, carbonyl compound, lithium-ion battery, electrode material
High-performance supercapacitor based on 1D cobalt-based coordination polymer
Hongren RONG, Gexiang GAO, Zhiwei LIU, Ke ZHOU, Lixin SU, Hao HUANG, Wenlong LIU, Qi LIU
【无机化学学报】doi: 10.11862/CJIC.20250034
A low-cost 1D cobalt-based coordination polymer (CP) [Co(BGPD)(DMSO)2(H2O)2] (Co-BD; H2BGPD=N, N'-bis(glycinyl)pyromellitic diimide; DMSO=dimethyl sulfoxide) was synthesized by a simple method, and its crystal structure was characterized. In a three-electrode system, Co-BD, as the electrode material for supercapacitors, achieved a specific capacitance of 830 F·g-1 at 1 A·g-1, equivalent to a specific capacity of 116.4 mAh·g-1, and exhibited high-rate capability, reaching 212 F·g-1 at 20 A·g-1. Impressively, Co-BD||rGO (reduced graphene oxide), representing an asymmetrical supercapacitor, owns a higher energy density of 14.2 Wh·kg-1 at 0.80 kW·kg-1, and an excellent cycle performance (After 4 000 cycles at 1 A·g-1, the capacitance retention was up to 94%).
关键词: supercapacitor, cobalt compound, coordination polymers, crystal structure, electrode materials, electrochemical performances

出版年份

相关作者

相关热词